簡易檢索 / 詳目顯示

研究生: 蘇韋霖
Su, Wei-Lin
論文名稱: 鋁矽合金粉末應用於選擇性雷射燒熔之製程參數研究
Parametric Research of Selective Laser Melting with Aluminum-Silicon Alloy Powders
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 金屬積層製造選擇性雷射燒熔鋁合金製程參數
外文關鍵詞: Metal additive manufacturing, Selective laser melting, Aluminum alloy, Process parameters
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來發展的金屬積層製造將帶來創新的加工方式,透過加法製程,將材料以層層堆疊的方式結合,因此將不受限於成型的複雜度。選擇性雷射燒熔(Selective Laser Melting, SLM)技術為目前金屬積層製造中的重點技術,利用雷射做為加工熱源,使金屬粉末材料熔融並快速冷卻聚合成型,不需經過後續加工處理就能夠有良好的精度及表面粗糙度,並且達到接近完全緻密的物件。
    本研究將使用氣霧法製程之AlSi10Mg合金粉末,以選擇性雷射燒熔製程進行參數研究,過程中將探討雷射功率、粉末鋪層厚度、掃描速度、掃描間距等製程參數的改變對於成型物件的緻密度影響,並且比較製程前後的微觀結構及熱處理前後的機械性質改變,找出適當的製程參數區間。
    研究結果顯示,在雷射功率360W及鋪層厚度0.05mm定義能量密度區間:低於40 J/mm^3為能量不足區間,參數平均相對密度值為96.03%;40至75 J/mm^3為能量適當區間,參數平均相對密度值為99.58%;超過75 J/mm^3為能量過大區間,參數平均相對密度值為99.15%。在能量密度值55 J/mm^3下的參數,其相對密度值皆大於99.8%,且表現出最優異的穩定性,因此定義為最佳能量密度值,並以此能量密度值參數(P=360W, t=0.05mm, s=550mm/s, h=0.24mm)測得最佳機械性質,與傳統鑄造方式相比,拉伸強度提升68%;降伏強度提升45%;伸長率提升13%;硬度提升62%,展示出SLM製程下的快速冷卻因素使晶粒細化產生優異的機械性質。

    In recent years, the development of metal additive manufacturing (MAM) has brought an innovative progress. Through the additive manufacturing process, the material will be stacked in layers, it will not be limited by the complexity of molding. Selective Laser Melting (SLM) technology is the key technology for the current metal manufacturing. It uses laser as the processing heat source, making the metal powder melt and rapidly cooling. SLM process presents great potential applications in the fabrication of complex parts with fine microstructure. In this study, AlSi10Mg alloy powder obtained by gas atomization process is used to study the parameters of SLM process. The effects of objective of this research is to investigate process parameters such as laser power, layer thickness, scanning speed and hatching distance on the relative density on the object. We then compare the microstructure through the SLM process and mechanical properties before and after heat treatment to determine the appropriate process parameters interval. Results show that the average relative density of the parameters is 96.03%, 99.58%, and 99.15%, with the energy density less than 40 J/mm^3, 40 to 75 J/mm^3, and more than 75 J/mm^3, respectively. Results also show that at the energy density value of 55 J/mm^3, the relative density values are greater than 99.8% and exhibit the optimal stability; therefore, defined as the optimum energy density values. The optimum mechanical properties were measured with this energy density parameter (P = 360 W, t = 0.05 mm, s = 550 mm/s, h = 0.24 mm). Compared with the traditional casting method, SLM helps increase tensile strength by 68%, yield strength by 45%; elongation by 13%, and hardness by 62%. The result demonstrates that the rapid cooling factor under the SLM process produces fine grain refinement to achieve excellent mechanical properties.

    摘要 I 英文延伸摘要(Extended Abstract) II 致謝 VIII 目錄 IX 圖目錄 XII 符號表 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 積層製造技術發展歷程 4 1.2.2選擇性雷射燒熔製程現象 9 1.3研究動機與目的 16 第二章 實驗設備及量測儀器 17 2.1 氣霧化法金屬粉末製程及粉末粒徑篩分系統 17 2.2 金屬粉末粒徑量測分析儀 20 2.3 選擇性雷射燒熔系統 22 2.4 選擇性雷射燒熔試片量測儀器 24 2.4.1 雷射共軛焦三維形貌量測儀 24 2.4.2 金相顯微鏡 25 2.4.3 掃描式電子顯微鏡(SEM) 26 2.4.4 X光繞射儀(XRD) 27 2.4.5 感應耦合電漿光譜分析儀(ICP-AES) 28 2.4.6 維克氏硬度試驗機 29 2.4.7 萬能試驗機 31 2.4.8 濕式研磨拋光機 32 2.4.9 鑲埋機 32 第三章 實驗步驟及方法 33 3.1 研究材料 33 3.2 選擇性雷射燒熔製程參數實驗 35 3.2.1 線掃描 37 3.2.2 面掃描 38 3.2.3 體掃描 40 3.3 選擇性雷射燒熔製程參數檢驗 41 3.3.1 孔隙率分析方法 41 3.3.2 拉伸試片製作 44 3.3.3 金相試片製作 45 第四章 結果與討論 47 4.1 粉末粒徑篩分結果 47 4.2 選擇性雷射燒熔結果 52 4.2.1 線掃描分析結果 52 4.2.2 面掃描分析結果 56 4.2.3 體掃描分析結果 58 4.2.4 拉伸及硬度分析結果 75 4.2.5 合金成份分析結果 78 4.2.6 金相分析結果 79 第五章 結論 90 參考文獻 92

    [1] G. N. Levy, R. Schindel, J. P. Kruth, "Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives." CIRP Annals-Manufacturing Technology 52.2 (2003): 589-609.
    [2] H. Kodama, "A scheme for three-dimensional display by automatic fabrication of three-dimensional model." J. IEICE 64 (1981): 1981-4.
    [3] J. P. Kruth, "Consolidation phenomena in laser and powder-bed based layered manufacturing." CIRP Annals-Manufacturing Technology 56.2 (2007): 730-759.
    [4] C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography." U.S. Patent No. 4,575,330. 11 Mar. 1986.
    [5] I. Zein, "Fused deposition modeling of novel scaffold architectures for tissue engineering applications." Biomaterials 23.4 (2002): 1169-1185.
    [6] J. C. Nelson, "Model of the selective laser sintering of bisphenol-A polycarbonate." Industrial & Engineering Chemistry Research 32.10 (1993): 2305-2317.
    [7] F. Miani, "On the development of new metal powders for the selective laser sintering process." Proceedings of the Third World Congress on Intelligent Manufacturing Process and System, Boston, MA. 2000.
    [8] T. B. Sercombe, G. B. Schaffer, "Rapid manufacturing of aluminum components." Science 301.5637 (2003): 1225-1227.
    [9] D. Dai, Gu. Dongdong, "Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments." Materials & Design 55 (2014): 482-491.
    [10] E. O. T. Olakanmi, R. F. Cochrane, K. W. Dalgarno. "A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties." Progress in Materials Science 74 (2015): 401-477.
    [11] D. Buchbinder, "High power selective laser melting (HP SLM) of aluminum parts." Physics Procedia 12 (2011): 271-278.
    [12] K. Kempen, "Mechanical properties of AlSi10Mg produced by selective laser melting." Physics Procedia 39 (2012): 439-446.
    [13] K. Kempen, "Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation." Materials Science and Technology 31.8 (2015): 917-923.
    [14] E. Louvis, F. Peter, J. S. Christopher, "Selective laser melting of aluminium components." Journal of Materials Processing Technology211.2 (2011): 275-284.
    [15] M. Simonelli, "A study on the laser spatter and the oxidation reactions during selective laser melting of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V." Metallurgical and Materials Transactions A 46.9 (2015): 3842-3851.
    [16] N. T. Aboulkhair, "Reducing porosity in AlSi10Mg parts processed by selective laser melting." Additive Manufacturing 1 (2014): 77-86.
    [17] Su, Xubin, Yang. Yongqiang, "Research on track overlapping during selective laser melting of powders." Journal of materials processing technology212.10 (2012): 2074-2079.
    [18] E. Brandl, "Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior." Materials & Design 34 (2012): 159-169.
    [19] S. Das, "Physical aspects of process control in selective laser sintering of metals." Advanced Engineering Materials 5.10 (2003): 701-711.
    [20] E. O. Olakanmi, "Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties." Journal of Materials Processing Technology 213.8 (2013): 1387-1405.
    [21] E. O. Olakanmi, "Direct selective laser sintering of aluminium alloy powders." Diss. University of Leeds, 2008.
    [22] Li, Yingli, "Heat transfer and phase transition in the selective laser melting process." International Journal of Heat and Mass Transfer 108 (2017): 2408-2416.
    [23] P. Mercelis, J. P. Kruth. "Residual stresses in selective laser sintering and selective laser melting." Rapid Prototyping Journal 12.5 (2006): 254-265.
    [24] K. Osakada, S. Masanori. "Flexible manufacturing of metallic products by selective laser melting of powder." International Journal of Machine Tools and Manufacture 46.11 (2006): 1188-1193.
    [25] X. Ding, W. Linzhi. "Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment." Journal of Manufacturing Processes 26 (2017): 280-289.
    [26] G. B. Schaffer, B. J. Hall. "The influence of the atmosphere on the sintering of aluminum." Metallurgical and Materials Transactions A 33.10 (2002): 3279-3284.
    [27] Gu, Dongdong, Y. Shen. "Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods." Materials & Design 30.8 (2009): 2903-2910.
    [28] A. Simchi, H. Asgharzadeh. "Densification and microstructural evaluation during laser sintering of M2 high speed steel powder." Materials science and technology 20.11 (2004): 1462-1468.
    [29] J. H. Peng, "Effect of heat treatment on microstructure and tensile properties of A356 alloys." Transactions of Nonferrous Metals Society of China21.9 (2011): 1950-1956.
    [30] M. Tiryakioğlu, "The effect of solution treatment and artificial aging on the work hardening characteristics of a cast Al–7% Si–0.6% Mg alloy." Materials Science and Engineering: A 427.1 (2006): 154-159.
    [31] N.T. Aboulkhair, "The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment." Materials Science and Engineering: A 667 (2016): 139-146.
    [32] N.T. Aboulkhair, "Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality." Materials & Design 104 (2016): 174-182.
    [33] W. Li, "Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism." Materials Science and Engineering: A 663 (2016): 116-125.
    [34] Y. Liu, "Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder." Materials & Design 87 (2015): 797-806.
    [35] P. Wei, "The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior." Applied Surface Science 408 (2017): 38-50.

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE