| 研究生: |
徐玄修 Hsu, Hsuan-Hsiu |
|---|---|
| 論文名稱: |
整合型微透析電泳晶片之研發 Integration of Microfluidic Chips with Microdialysis Probe |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 微流體晶片 、微透析技術 |
| 外文關鍵詞: | Microfluidic chip, Microdialysis probe |
| 相關次數: | 點閱:151 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是結合微透析探針取樣技術與微流體電泳晶片,並配合本實驗室開發出的連續壓力流進樣偶合晶片式電泳分析技術,發展出一套整合型微透析電泳晶片。本研究已成功開發出第一代及第二代整合型微透析電泳晶片,其主要差異在於第一代是在晶片外面進行神經傳導物質與螢光染料的線上(on-line)標示,第二代則是在晶片的微管道內完成線上(on-line) 螢光染料標示。
第一代整合型微透析電泳晶片,由於具有連續進樣槽造成的分流,可在高流速下(0.75-1μL/min)以連續壓力流進樣,以雙管注射針完成線上將神經傳導物質(Glutamate)標示螢光染料,立即以連續壓力流進入微流體晶片,進行連續進樣分析達30分鐘以上,當分析物濃度改變時,偵測到的訊號改變回應時間5分鐘可完成。此結果證明第一代整合裝置之可行性。
第二代整合型微透析電泳晶片是以十字型晶片上操作,將第一代的晶片外線上標示染料裝置移除,由單管注射針連續進樣在十字晶片的微管道內進行即時螢光染料標示,標示過程可在10秒鐘完成,裝置比第一代更為簡便,連續進樣分析可持續30分鐘,當改變分析物濃度,訊號回應時間可縮短至3分鐘,此時間主要受限在微透析探針的呆體積(dead volume)。此結果證明第二代整合裝置之可行性。Glutamate和Arginine之分離時間可縮短至6秒,而Glutamate和Arginine的校正曲線R2值都達0.99以上,藉由整合微透析與微流體晶片,其連接界面比結合微透析與毛細管電泳之技術更為簡便,可達到連續監測神經傳導物質,快速分析之效果。
The goal of this study is to integrate the electrophoretic microchip with the microdialysis probe for the development a microfluidic chip system with the integrated function for sampling, separation and on-line detection. The integration of this device is based on the continuous flow-through sampling method that couples hydrodynamic and electrophoretic flows on the microchip. In this study, two generations of integrated microchips were developed. The major difference between these two generations is that the on-line labeling of neurotransmitters (Glutamate and Arginine) is achieved outside the microchip for the first generation and the labeling is achieved on-chip for the second generation.
For the first generation of the microchip, the fluorescence dye OPA, was mixed with glutamate using a tee unit. The mixture was driven directly into the microchip under the flow rate between 0.75 to 1μL/min, and then separated and detected on-chip. In this device, continuous injection, separation and detection could be repeated and analyzed up to more than 30 minutes. This device was demonstrated to be capable of continuously monitoring the concentration variation with a response time around 5 minutes.
For the second generation of the microchip, on-line labeling was completed within the microchannel that was pre-filled with fluorescence dye and labeling time was shortened to be less than 10 seconds. Moreover, the response time for concentration variation of the analyte was just around 3 minutes, and the required response time was majorly due to the dead volume of the microdialysis probe instead of other parts used for microchip fabrication. The second generation of the integrated device is much simple than the first generation and could be continuously operated for more than 30 minutes.
In one example, a mixture containing glutamate and arginine was demonstrated that they could be sampled, separated and detected within 6 seconds. Moreover, this device was shown for quantitative analysis of the mixture containing glutamate and arginine (1mM~10mM) with a R2 value greater than 0.99. We believe that this integrated microfluidic device was of great potential for real-time monitoring.
1. Z.L. Fang, Q. Fang, Fresenius J. Anal. Chem., 2001, 370, pp. 978–983.
2. M. Bao, W. Wang, Sensors and Actuators, 1996, A56, pp. 135-141.
3. D.J. Harrison, A. Manz, Z. Fan, H. Lüdi, H.M. Widmer, Anal.Chem., 1992, 64, pp. 1926-1932.
4. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed., 1998, 37, pp. 550-575.
5. D.J. Lockhart, Nat. Biotechnol. 1996, 14, pp. 1675-1680.
6. A.Manzs, N.Graber, H.M.Widmer, Sens. Actuators. 1990, B1, pp. 244-248.
7. J.H. Gaddum, Push-pull cannulae., J. Physiol., 1961, 173, pp. 375-377.
8. L. Bito, H. Davson, E M. Levin, M. Murray, N. Snider,
The concentration of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog., J. Neurochem., 1966, 13, pp. 1557-1067.
9. J.M.R. Delgado, F.V. DeFeuids, R. H. Roth, D. K. Ryugo, B.M. Mitrula, Dialytrode for long term intracerebral perfusion in awake monkeys., Arch. Int. Pharmacodyn., 1972, pp. 198, 9-21.
10. U. Ungerstedt, C. Pycock, Functional correlates of dopamine neurotransmission., Bull. Schweiz. Akad. Med. Wiss., 1974, 1278, pp. 1-13.
11. T.L. Lisi, K.N. Westlund, K.A. Sluka, J. Neurosci. Meth., 2003, 126(2), pp. 187-194.
12. F. Tomaselli, P Dittrich, A, Maier, et al., Brit. J. Clin. Pharmacol., 2003, 55(6), pp. 620-624.
13. T. Obata, M. Tamura, Y. Yamanaka, J. Physiology-Paris, 1997, 91(1), pp. 39-40.
14. B.A. Donzanti, B.K. Yamamoto, Life Sci., 1988, 43, pp. 913-922.
15. U. Tossman, U. Ungerstedt, Microdialysis in the study of extracellular levels of amino acids in the rat brain., Acta. Physiol. Scand., 1986, 128, pp. 9-14.
16. H. Benvenisite, J. Drejer, A. Schousboe, N.H. Diemer, J. Neurochem., 1984, 43, pp. 1369-1374.
17. T. Huang, R.E. Shoup, P.T. kissinger, Curr. Sep., 1990, ,10, pp. 16-18.
18. F.C. Cheng, L.L. Yang, F.M. Chang, J.S. kuo, J. Chromatogr., 1992, 582, pp. 19-27.
19. S.Y. Zhou, H. Zuo, J.F. Stobaugh, C.E. Lunte, S.E. Lunte, Anal. Chem., 1995, 67, pp. 594-599.
20. S. Tellez, N. Forges, N. Roussin, L. Hernandez, J. Chromatogr., 1992, 581, pp. 257.
21. B.L. Hogan, S.M. Lunte, J.F. Stobaugh, C.E. Lunte, Anal. Chem., 1994, 66, pp. 596.
22. T.E. Robinson, D.M. Camp, In: T. E. Robinson and J. B. Justice, Jr (Eds.), Microdialysis in the Neurosciences. Techniques in the Behavioral and Neural Sciences, Vol. 7, Elsevier, Amsterdam, 1991, pp. 189–234.
23. A. Dahchour, P. De Witte, Eur. J. Pharma. Col., 2003, 459(2-3), pp. 171-178.
24. S.Y. Zhou, H. Auo, J.F. Stobaugh, C.E. Lunte, S.M. Lunte, Anal. Chem., 1995, 67, pp. 594-599.
25. M.W. Lada, R.T. Kennedy, Anal. Chem., 1996, 68, pp. 2790-2797.
26. M.W. Lada, T.M Vickroy, R.T. Kennedy, Anal. Chem., 1997, 69, pp. 4560-4565.
27. J.E. Thompson, T.W. Vickroy, R.T.Kennedy, Anal. Chem., 1999, 71, pp. 2379-2384.
28. B.W. Boyd, S.R. Witowski, R.T. Kennedy, Anal. Chem., 2000, 72, pp. 865-871.
29. M.T. Bowser, R.T. Kennedy, Electrophoresis, 2001, 22, pp. 3368-3676.
30. J.E. Thompson, T.W. Vickroy, R.T.Kennedy, J. Neurosci. Methods, 2002, 114, pp. 39-49.
31. R.T. Kennedy, C.J. Watson, W.E. Haskins, D.H. Powell, R.E. Strecker, Curr. Opin. Chem. Biol., 2002, 6, pp. 659-665.
32. D.N. Heiger, High Performance Capillary Electrophoresis – An Introduction, 2th ed.; Hewlett-Packard Company; 1992.
33. A. Kohlarush, Ann. Phys. Chem., 62, 209-239 (1987)
34. 黃冠瑞, “高效能微流體晶片之設計製作與其在生物醫學之應用”, 國立成功大學工程科學系, 中華民國九十年六月
35. 林哲信, 李國賓, 劉恆惠, 陳淑慧, “玻璃基材微流體系統製作技術及其應用”, 中華民國第二十六屆全國力學會議
36. S. Wolf, Silicon Processing for the VLSI Era, 1986, Vol.1, Ch.15, Lattice Press.
37. S. Attiya, A.B. Jemere, T. Tang, G. Fitzpatrick, K. Seiler, N. Chiem, D.J. Harrison, Electrophoresis, 2001, 22, pp. 318-327.
38. S.H. Chen, Y.H. Lin, L.Y. Wang, C.C. Lin, G.B. Lee, Anal. Chem., 2002, 74, pp. 5146-5153.
39. P. A. Longwell, Mechanics of Fluid Flow, Mcgraw Hill, New York, 1966.
40. J.H. Perry, Chemical Engineers Handbook, Mcgraw Hill, New York, 1950, pp. 3485
41. F. Delahaye, L. Montagne, G. Palavit, J. C. Touray and P. Baillif, “Acid dissolution of sodium-calcium metaphosphate glasses,” J. Non-Cryst Solids. 242, pp. 25-32.
42. K. Seiler, D.J. Harrison, A. Manz. Anal. Chem., 1993, 65, pp. 1481-1488.
43. G. Ovick, T. Tang, J. Harrison, Analyst, 1998, 123, pp. 1429.
44. N.Chiem, D.J. Harrison, Anal. Chem., 1997, 69, pp. 373-378.
45. N.H. Chiem, D.J. Harrison, Electrophoresis, 1998, 19, pp. 3040-3044.
46. N.H. Chiem, D.J. Harrison, Clin. Chem., 44, 3, pp. 591.
47. C.B. Cohen, E.C. Dioxon, S. Jeong, T.T. Nikiforov. Anal. Biochem., 1999, 273, pp. 89.
48. S. Zhang, Q. Xu, W. Zhang, L. Jin, J.Y. Jin, Anal. Chim. Acta., 2001, 427, pp. 45-53.
49. M.W. Lada, R.T. Kennedy, J. Neurosci. Methods., 1997, 72, pp. 153-159.
50. P.G. Vahey, S.H. Park, B.J. Marquardt, Y. Xia, L.W. Burgess, R.E. Synovec, Talanta., 2000, 51, pp. 1205-1212.
51. P.G. Vahey, S.A. Smith, C.D. Costin, Y. Xia, A. Brodsky, L.W. Burgess, R.E. Synovec, Anal. Chem., 2002, 74, pp. 177-184.
52. Y.H. Lin, G.B. Lee, C.W. Li, G.R. Huang, S.H. Chen, J. Chromatogr. A, 2001, 937/1-2, pp. 115-125.
53. C.S. Effenhauser, A. Manz, H.M. Widmer, Anal. Chem., 1993, 65, pp. 2637-2642.
54. S.C. Jacobson, R. Hergenroeder, A.W. Moore, J.M. Ramsey, Anal. Chem., 1994, 66, pp. 4127-4132.
55. A.H. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D.J. Harrison, Anal. Chem., 1996, 68, pp. 1040-1046.
56. G. Ocvirk, T. Tang., , D.J. Harrison, Analyst, 1998, 123, pp. 1429-1434.
57. 瑞典CMA公司網站www.microdialysis.se