| 研究生: |
蕭博聰 Hsiao, Po-Tsung |
|---|---|
| 論文名稱: |
電子傳遞特性的差異對染料敏化太陽能電池表現之影響 Influence of Electron Transfer Pattern on the Performance of Dye-Sensitized Solar Cells |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 電子再結合反應 、染料敏化太陽能電池 、銳鈦礦 |
| 外文關鍵詞: | anatase, recombination, dye-sensitized solar cell |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池光電轉換效率受到電子傳遞速度以及電子與電解質中的I3-所產生之再結合反應的影響,本研究針對電子與電解質中的I3-所產生之再結合反應,建構出動力學方程式,利用I-V特性曲線、電池開環電壓對光源強度改變之回應、電池開環電壓對I3-濃度改變之回應和切斷光源後開環電壓衰退的實驗結果合併,可將式中的參數予以定量。藉由電解質中加入TBP可提升電池開環電壓(從0.489至0.706V),以致光電轉換效率提升(從5.095至8.687%),利用我們所建構的方式運用至此系統,說明TBP的加入造成導帶邊緣能量的平移,此平移的差異與實際電池開環電壓的差異甚為相同,證實此法所求得的參數可性度。
至於電子傳遞的部分,我們發展出一套以鈦酸鹽結構直接形成二氧化鈦奈米結晶顆粒的方式與一般使用溶膠凝膠法來製備的二氧化鈦奈米顆粒作比較,藉由此法形成的奈米顆粒用來製成電極薄膜可獲得純銳鈦礦相及氧空缺較少的二氧化鈦結晶,有利於電子在導帶上的傳遞,因此可得到較高的光電轉換效率,從IMPS(Intensity-Modulated Photocurrent Spectroscopy)分析的結果可證實具純銳鈦礦相與結晶缺陷少的二氧化鈦擁有較快的電子擴散速度。
Charge recombination between dye-sensitized TiO2 electrodes and I3- in the electrolyte and electron diffusion in the nanocrystalline TiO2 electrode govern the performance of a dye-sensitized solar cell (DSSC). The present work constructed a theoretical model to explore the recombination kinetics. The sensitizer was cis-di(thiocyanate)bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II). The photocurrent-voltage characteristics, the open-circuit voltage in response to light intensity, the open-circuit voltage in response to I3- concentration, and the open-circuit voltage decay behavior were combined to give the kinetic parameters for the recombination. This developed model was applied to cells with or without the presence of 4-tert-butylpyridine (TBP), which improved significantly the open-circuit voltage (from 0.489 to 0.706 V) and thus the cell conversion efficiency (from 5.095 to 8.687%). The promotion in the open-circuit voltage has been ascribed to the shift of the TiO2 conduction band edge due to TBP addition.
As to electron transfer, TiO2 electrodes made of colloids derived from a titanate-directed route and a conventional sol-gel synthesis were subjected to examination. The TiO2 electrode obtained from the titanate-directed route consisted of phase-pure anatase with a lower degree of oxygen vacancy, and gave a better performance for an DSSC. IMPS (Intensity-Modulated Photocurrent Spectroscopy) analysis showed a higher rate for electron diffusion in the phase-pure and structure intact anatase TiO2.
1. M.Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001).
2. 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.
3. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
4. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells”, J. Am. Chem. Soc., 123, 1613, (2001).
5. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applicayions”, J. Am. Ceram. Soc., 80, 3157, (1997).
6. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 77, 89, (2003).
7. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036, (2003).
8. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, J. Electrochem. Soc., 143, 3099, (1996).
9. B. O’Regan, D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms”, Chem. Mater., 10, 1501, (1998).
10. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583, (1998).
11. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable Quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402, (2003).
12. C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-State and Flexible Dye-Sensitized TiO2 Solar cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, 106, 5925, (2002).
13. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
14. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000).
15. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).
16. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 164, 3, (2004).
17. A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 95, 49, (1995).
18. D. Ulrike, “The Surface Science of Titanium Dioxide”, Surf. Sci. Rep., 48, 53, (2003).
19. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. rev., 177, 347, (1998).
20. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989, (2000).
21. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
22. G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752, (1998).
23. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 107, 8981, (2003).
24. G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652, (1997).
25. S. Cherian, C. C. Wamser, J. Phys. Chem. B, 104, 3624, (2000).
26. S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 101, 2576, (1997).
27. A. Hauch, R. Kern, J. Ferber, “Charactisation of the Electrolyte-solid interfaces of Dye-Sensitized Solar Cell by Means of Impedance Spectroscopy”, 2nd World Conference, Vienna, European Communities, (1998).
28. N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 44(4), 405, (1996).
29. U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, 395(6702), 583, (1998).
30. P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2972, (2002).
31. E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825, (2003).
32. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 144, 99, (1996).
33. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160, (1998).
34. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307, (1999).
35. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
36. C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
37. M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 109, 8673, (2005).
38. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 390, (1938).
39. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 73, 373, (1951).
40. M. Kruk, M. Jaroniec, J. Phys. Chem. B, 104, 7960, (2000).
41. L. M. Peter, K. G. U. Wijayantha, “Intensity Dependence of the Electron Diffusion Length in Dye-Sensitized Nanocrystalline TiO2 Photovoltaic Cells”, Electro. Commun., 1, 576, (1999).
42. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shwa, I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cell: Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B, 101, 10281, (1997).
43. G. Schlichthörl, S. Y. Huang, J. Spraque, A. J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 101, 8141, (1997).
44. K. B. Teo, “EXAFS: Basic Principle and Data Analysis”, Springer-Verlag, New York, (1998).
45. D. C. Koningsberger, R. Prins, “X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES”, John Wiley, New York, (1988).
46. C. C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367, (2006).
47. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101, 2576, (1997).
48. A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements”, Chem. Phys. Chem., 4, 859, (2003).
49. A. J. Frank, N. Kopidakis, Jao van de Lagemaat, “Electrons in Nanostructured TiO2 Solar Cells: Transport, Recombination and Photovoltaic Properties”, Coord. Chem. Rev., 248, 1165, (2004).
50. Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for Titanium Oxides by Multiple Scattering Calculations: Comparison to XAS and EELS Spectra”, Phys. Rev. B, 55, 10382, (1997).