簡易檢索 / 詳目顯示

研究生: 蕭博聰
Hsiao, Po-Tsung
論文名稱: 電子傳遞特性的差異對染料敏化太陽能電池表現之影響
Influence of Electron Transfer Pattern on the Performance of Dye-Sensitized Solar Cells
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 電子再結合反應染料敏化太陽能電池銳鈦礦
外文關鍵詞: anatase, recombination, dye-sensitized solar cell
相關次數: 點閱:58下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池光電轉換效率受到電子傳遞速度以及電子與電解質中的I3-所產生之再結合反應的影響,本研究針對電子與電解質中的I3-所產生之再結合反應,建構出動力學方程式,利用I-V特性曲線、電池開環電壓對光源強度改變之回應、電池開環電壓對I3-濃度改變之回應和切斷光源後開環電壓衰退的實驗結果合併,可將式中的參數予以定量。藉由電解質中加入TBP可提升電池開環電壓(從0.489至0.706V),以致光電轉換效率提升(從5.095至8.687%),利用我們所建構的方式運用至此系統,說明TBP的加入造成導帶邊緣能量的平移,此平移的差異與實際電池開環電壓的差異甚為相同,證實此法所求得的參數可性度。
    至於電子傳遞的部分,我們發展出一套以鈦酸鹽結構直接形成二氧化鈦奈米結晶顆粒的方式與一般使用溶膠凝膠法來製備的二氧化鈦奈米顆粒作比較,藉由此法形成的奈米顆粒用來製成電極薄膜可獲得純銳鈦礦相及氧空缺較少的二氧化鈦結晶,有利於電子在導帶上的傳遞,因此可得到較高的光電轉換效率,從IMPS(Intensity-Modulated Photocurrent Spectroscopy)分析的結果可證實具純銳鈦礦相與結晶缺陷少的二氧化鈦擁有較快的電子擴散速度。

    Charge recombination between dye-sensitized TiO2 electrodes and I3- in the electrolyte and electron diffusion in the nanocrystalline TiO2 electrode govern the performance of a dye-sensitized solar cell (DSSC). The present work constructed a theoretical model to explore the recombination kinetics. The sensitizer was cis-di(thiocyanate)bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II). The photocurrent-voltage characteristics, the open-circuit voltage in response to light intensity, the open-circuit voltage in response to I3- concentration, and the open-circuit voltage decay behavior were combined to give the kinetic parameters for the recombination. This developed model was applied to cells with or without the presence of 4-tert-butylpyridine (TBP), which improved significantly the open-circuit voltage (from 0.489 to 0.706 V) and thus the cell conversion efficiency (from 5.095 to 8.687%). The promotion in the open-circuit voltage has been ascribed to the shift of the TiO2 conduction band edge due to TBP addition.
    As to electron transfer, TiO2 electrodes made of colloids derived from a titanate-directed route and a conventional sol-gel synthesis were subjected to examination. The TiO2 electrode obtained from the titanate-directed route consisted of phase-pure anatase with a lower degree of oxygen vacancy, and gave a better performance for an DSSC. IMPS (Intensity-Modulated Photocurrent Spectroscopy) analysis showed a higher rate for electron diffusion in the phase-pure and structure intact anatase TiO2.

    第一章 緒論...1 1-1 前言...1 1-2 半導體簡介...3 1-3 光伏效應...6 1-4 各種太陽能電池發展現況及比較...8 1-5 研究背景與目的...12 第二章 文獻回顧與理論說明...14 2-1 染料敏化太陽能電池...14 2-1.1 裝置構造...14 2-1.2 工作原理...15 2-1.3 逆反應...16 2-2 奈米結晶多孔膜電極...18 2-3 染料敏化劑...22 2-4 電解質...26 2-5 相對電極...28 第三章 實驗方法及儀器原理介紹...29 3-1 實驗藥品與器具...29 3-2 實驗設備...30 3-3 二氧化鈦奈米顆粒paste的製作與相關測試...31 3-3.1 水熱法合成二氧化鈦奈米顆粒paste...31 3-3.2 溶膠凝膠法合成二氧化鈦奈米顆粒paste...32 3-3.3 XRD繞射分析...34 3-3.4 BET和BJH分析...36 3-4 製作染料敏化太陽能電池...39 3-4.1 二氧化鈦薄膜電極的製備...39 3-4.2 染料敏化劑的吸附...39 3-4.3 電解質的配置...39 3-4.4 相對電極的製備...40 3-4.5 組裝染料敏化太陽能電池...40 3-5 電池的電性測試...42 3-5.1 I-V特性曲線的測試...42 3-5.2 電子再結合模式中參數的求取...44 3-5.3 IMPS和IMVS的測量...45 3-6 X光吸收光譜(XAS)...47 3-6.1 同步幅射光源...47 3-6.2 X光吸收近邊緣結構(XANES)...50 3-6.3 延伸X光精細結構(EXAFS)...51 第四章 結果與討論...55 4-1 二氧化鈦奈米顆粒的特性分析...56 4-1.1 XRD分析...56 4-1.2 RAMAN分析...59 4-1.3 氮氣吸脫附結果分析...60 4-1.4 SEM分析...62 4-2 理論式子的推導...63 4-2.1 電池於照光下的光電壓與光電流...63 4-2.2 切斷光源後開環電壓的衰退...65 4-3 電子再結合反應對電池表現的影響...68 4-3.1 電子再結合反應的反應階數...68 4-3.2 TBP對電池的電子再結合反應之影響...75 4-3.3 H240和S240的電子再結合反應之差異...80 4-4 以H240作為染料敏化電池電極的優越性...84 4-4.1 IMPS和IMVS的測定...84 4-4.2 H240與S240於X光吸收光譜的差異...87 第五章 結論...91 5-1 電子再結合參數定量化...91 5-2 以水熱法合成奈米結晶顆粒的H240作為染料敏化太陽能電池電極的優勢...91 第六章 參考文獻...93 作者簡介...98 圖目錄 圖1-1 各種化合物半導體的能帶結構圖...5 圖1-2 pn-junction示意簡圖:在接面附近由於電子電洞流的擴散,形成正負離子而產生電場,此區域一般稱為空乏區或空間電荷區...7 圖1-3 染料敏化太陽能電池的各項研究主題...13 圖2-1 染料敏化太陽能電池裝置圖...14 圖2-2 染料敏化太陽能電池工作原理示意圖...15 圖2-3 染料敏化太陽能電池各反應動力學比較示意圖...17 圖2-4 二氧化鈦二種主要的晶相結構...21 圖2-5 N3及Black dye染料的IPCE(incident photo to current conversion efficiency)應答曲線及其化學結構...24 圖2-6 染料分子能階的示意圖...25 圖2-7 (a)染料透過carboxylate groups與TiO2表面形成ester linkages(b)染料分子與TiO2其它的鍵結模式...25 圖2-8 spiro-MeOTAD固態電解質的元件結構圖...27 圖3-1 以溶膠凝膠法與溶膠凝膠法合成二氧化鈦奈米顆粒之實驗流程及測試...33 圖3-2 高溫高壓反應器...33 圖3-3 X光對晶體繞射的示意圖...35 圖3-4 X光繞射分析儀之設備圖...35 圖3-5 表面積分析測定儀...38 圖3-6 染料敏化太陽能電池的組裝步驟...41 圖3-7 染料敏化太陽能電池的電池光電轉換效率測試系統...43 圖3-8 I-V特性曲線示意圖...43 圖3-9 IMPS和IMVS的光應答示意圖...46 圖3-10 典型的X光吸收光譜...49 圖3-11 二種測量模式之示意圖...49 圖3-12 背向散射程式之示意圖...54 圖4-1 H240、S240與P25於450℃下鍛燒30分鐘後之XRD分析比較圖...57 圖4-2 由P25前驅物經130℃中水熱20小時後,再利用硝酸酸洗至pH約1.5左右,進行240℃水熱12小時所獲得H240二氧化鈦奈米顆粒,其實驗過程中各個階段的XRD分析...58 圖4-3 鈦酸鹽結構合成二氧化鈦銳鈦礦示意圖...58 圖4-4 H240和S240於450℃下鍛燒30分鐘後之RAMAN分析圖...59 圖4-5 H240、S240與P25之BJH脫附曲線孔徑分佈圖(a)鍛燒前(b)於450℃下鍛燒30分鐘後...61 圖4-6 (a)H240(b)S240經doctor-blade塗佈成薄膜後,於450℃下鍛燒30分鐘之SEM圖...62 圖4-7 染料敏化太陽能電池的能階示意圖(EF與E(I3-/I-)的差值即為電壓)及電子再結合的傳遞路徑R1和R2(染料受光激發將電子注入導帶中,導帶上電子可能與染料氧化態或I3-進行再結合反應)...67 圖4-8 針對持續照光下進行電位掃描與照光後將光源切斷並控制系統於開環的情況,當電位逐漸下降時,電子傳遞路徑的差別...67 圖4-9 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,改變光源強度(60-220mW/cm2)照射下開環電壓的變化...69 圖4-10 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配不同LiI/I2濃度(0.1/0.05、0.3/0.15、0.5/0.25)、0.6M DMPII、0.5M TBP溶於acetonitrile之電解質所組成的電池,其開環電壓的變化...70 圖4-11 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,比較TBP添加的與否在光源強度(60-220mW/cm2)改變下開環電壓變化之差異...71 圖4-12 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及不同LiI/I2濃度(0.1/0.05、0.3/0.15、0.5/0.25)、0.6M DMPII溶於acetonitrile之電解質所組成的電池,比較TBP添加在I3-濃度改變下開環電壓變化之差異...72 圖4-13 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,比較H240和S240在光源強度(60-220mW/cm2)改變下開環電壓變化之差異...73 圖4-14 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,比較H240和S240在I3-濃度改變下開環電壓變化之差異...74 圖4-15 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,於100mW/cm2之光源強度照射下,比較TBP添加的與否對電池I-V特性曲線的影響...77 圖4-16 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,先於100mW/cm2之光源強度照射後切斷光源並設定在開環情況下,lnτn對 的關係圖(a)H240搭配未含TBP的電解質(b)H240搭配含有0.5M TBP的電解質...78 圖4-17 以H240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile之電解質所組成的電池,於100mW/cm2之光源強度照射下進行電位掃描(Voc至0V),lnJr對 的關係圖(a)H240搭配未含TBP的電解質(b)H240搭配含有0.5M TBP的電解質...79 圖4-18 以H240與S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,於100mW/cm2之光源強度照射下,比較H240和S240對電池I-V特性曲線的影響...81 圖4-19 以H240和S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,先於100mW/cm2之光源強度照射後切斷光源並設定在開環情況下,lnτn對 的關係圖(a)H240作為工作電極(b)S240作為工作電極...82 圖4-20 以H240和S240奈米顆粒塗佈成面積0.25cm2、厚度14μm之薄膜,經450℃下鍛燒30分鐘配合N3染料吸附作為工作電極,搭配電解質成分為0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile所組成的電池,於100mW/cm2之光源強度照射下進行電位掃描(Voc至0V),lnJr對 的關係圖(a)H240作為工作電極(b)S240作為工作電極...83 圖4-21 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,以455nm的藍光(強度10mW/cm2,震幅2.5%)作為激發光源並控制電池於開環的條件下,H240與S240的IMVS分析圖(左:Nyquist圖、右:Bode圖)...85 圖4-22 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,以455nm的藍光(強度10mW/cm2,震幅2.5%)作為激發光源並控制電池於閉環的條件下,H240與S240的IMPS分析圖(左:Nyquist圖、右:Bode圖)...86 圖4-23 H240和S240奈米顆粒經450℃下鍛燒30分鐘後的X光吸收光譜...89 圖4-24 H240和S240的X光吸收光譜之dμ/dE對能量的變化圖...89 圖4-25 H240和S240的X光吸收光譜在EXAFS部分,經傅立葉轉換後之圖及其適套結果...90 表目錄 表2-1 二氧化鈦各晶相的物理特性...21 表4-1 由XRD估計H240、S240與P25於450℃下鍛燒30分鐘後的粒徑大小...57 表4-2 H240、S240與P25於450℃鍛燒前後的比表面積及平均孔徑...60 表4-3 以H240作為染料敏化電池之工作電極搭配染料為N3與無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile的電解質成分所組成之電池,於100mW/cm2之光源強度照射下的光應答表現...77 表4-4 以H240作為染料敏化電池之工作電極搭配染料為N3與無TBP添加或0.5M TBP添加以及0.1M LiI、0.05M I2、0.6M DMPII溶於acetonitrile的電解質成分所組成之電池,其TBP添加與否對電子再結合模式中參數的影響...79 表4-5 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,於100mW/cm2之光源強度照射下的光應答表現...81 表4-6 以H240和S240作為染料敏化電池之工作電極搭配染料為N3與0.1M LiI、0.05M I2、0.6M DMPII、0.5M TBP溶於acetonitrile的電解質成分所組成之電池,比較H240和S240對電子再結合模式中參數的影響...83 表4-7 由IMVS和IMPS所計算出H240和S240電子傳遞特性的差異...86 表4-8 適套EXFAFS傅立葉轉換圖所求出的結構參數...90

    1. M.Grätzel, “Photoelectrochemical cells”, Nature, 414, 338, (2001).
    2. 莊家琛, “太陽能工程-太陽電池篇”, 全華, 台北市, 第一章、第二章, 民86.
    3. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
    4. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar cells”, J. Am. Chem. Soc., 123, 1613, (2001).
    5. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applicayions”, J. Am. Ceram. Soc., 80, 3157, (1997).
    6. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes”, Sol. Energy Mater. Sol. Cells, 77, 89, (2003).
    7. T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 3036, (2003).
    8. N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications”, J. Electrochem. Soc., 143, 3099, (1996).
    9. B. O’Regan, D. T. Schwartz, “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms”, Chem. Mater., 10, 1501, (1998).
    10. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583, (1998).
    11. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable Quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402, (2003).
    12. C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-State and Flexible Dye-Sensitized TiO2 Solar cells: a Study by Electrochemical Impedance Spectroscopy”, J. Phys. Chem. B, 106, 5925, (2002).
    13. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99, (1996).
    14. D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053, (2000).
    15. D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119, (1996).
    16. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 164, 3, (2004).
    17. A. Hagfeldt, M. Grätzel, “Light Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 95, 49, (1995).
    18. D. Ulrike, “The Surface Science of Titanium Dioxide”, Surf. Sci. Rep., 48, 53, (2003).
    19. K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices”, Coord. Chem. rev., 177, 347, (1998).
    20. N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989, (2000).
    21. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 115, 6382, (1993).
    22. G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 75, 752, (1998).
    23. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 107, 8981, (2003).
    24. G. J. Meyer, “Efficient Light-to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 74, 652, (1997).
    25. S. Cherian, C. C. Wamser, J. Phys. Chem. B, 104, 3624, (2000).
    26. S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 101, 2576, (1997).
    27. A. Hauch, R. Kern, J. Ferber, “Charactisation of the Electrolyte-solid interfaces of Dye-Sensitized Solar Cell by Means of Impedance Spectroscopy”, 2nd World Conference, Vienna, European Communities, (1998).
    28. N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 44(4), 405, (1996).
    29. U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies”, Nature, 395(6702), 583, (1998).
    30. P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2972, (2002).
    31. E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825, (2003).
    32. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 144, 99, (1996).
    33. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, 3160, (1998).
    34. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 11, 1307, (1999).
    35. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, (2001).
    36. C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., (1971).
    37. M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 109, 8673, (2005).
    38. S. Brunaller, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., 60, 390, (1938).
    39. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., 73, 373, (1951).
    40. M. Kruk, M. Jaroniec, J. Phys. Chem. B, 104, 7960, (2000).
    41. L. M. Peter, K. G. U. Wijayantha, “Intensity Dependence of the Electron Diffusion Length in Dye-Sensitized Nanocrystalline TiO2 Photovoltaic Cells”, Electro. Commun., 1, 576, (1999).
    42. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shwa, I. Uhlendorf, “Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cell: Characterization by Intensity-Modulated Photocurrent Spectroscopy”, J. Phys. Chem. B, 101, 10281, (1997).
    43. G. Schlichthörl, S. Y. Huang, J. Spraque, A. J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 101, 8141, (1997).
    44. K. B. Teo, “EXAFS: Basic Principle and Data Analysis”, Springer-Verlag, New York, (1998).
    45. D. C. Koningsberger, R. Prins, “X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES”, John Wiley, New York, (1988).
    46. C. C. Tsai, H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments”, Chem. Mater., 18, 367, (2006).
    47. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 101, 2576, (1997).
    48. A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements”, Chem. Phys. Chem., 4, 859, (2003).
    49. A. J. Frank, N. Kopidakis, Jao van de Lagemaat, “Electrons in Nanostructured TiO2 Solar Cells: Transport, Recombination and Photovoltaic Properties”, Coord. Chem. Rev., 248, 1165, (2004).
    50. Z. Y. Wu, G. Ouvrard, P. Gressier, C. R. Natoli, “Ti and O K edges for Titanium Oxides by Multiple Scattering Calculations: Comparison to XAS and EELS Spectra”, Phys. Rev. B, 55, 10382, (1997).

    下載圖示 校內:2017-07-17公開
    校外:2017-07-17公開
    QR CODE