| 研究生: |
凃昇廷 Tu, Sheng-Ting |
|---|---|
| 論文名稱: |
超疏水性微結構的製造與應用 Manufacture and Application of a Hydrophobic Structure |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | PDMS 、空氣彈簧 、蓮花效應 、仿生結構 、超疏水性 、太陽能電池 |
| 外文關鍵詞: | PDMS, Air spring, Lotus effect, bionic structure, Super-hydrophobic, Solar cell |
| 相關次數: | 點閱:120 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蓮花之仿生技術研究已經發展了許多年頭,現今長應用於衛浴用品、交通工具,以及玻璃清潔等等。其中研究者最常將微結構設計為凸柱狀,此類結構之接觸角以可達150°以上,已具有超疏水性,然而一直存在著耐久性差與不易大量生產之問題;奈米超疏水塗料亦長久存在著容易因摩擦而脫落之問題。
本研究所設計出之具格狀半封閉微結構,藉由結構將空氣封閉住,以達空氣彈簧之效果,接觸角達160°以上,滑動角小於10°,具有極佳之自潔能力,並搭配材料之選擇使得結構強度大大提升。
透過創新之母模具製造方式,使得小尺寸之模具能夠輕鬆且快速擴板至大尺寸,對於未來量產上大量模具之需求與降低成本有極大的幫助,得以走上大量生產之階段。
本研究也將所設計之微結構樣本黏貼於太陽能電池,其介於空氣與電池間之折射率及結構捕光提升了太陽能電池之效率,高接觸角與低滑動角更讓太陽能電池有了一層抗汙層,避免灰塵堆積導致發電效率下降。
The research of the lotus bionics has been developed several years and it has been applied to toiletries, transportation, and glasses cleaning nowadays. One of the structure usually designed in the form of pillar by researchers can reach over 150° of contact angle and featured super-hydrophobic. However, the bad permanence of the structure and the difficulty of producing have been problems for a long time. Furthermore, Nano-super hydrophobic coating is easy to peel off because of friction which is also a problem of the structure.
The research designs the lattice semi-mural micro-structure, which can produce air spring by trapping air in the mural structure, and it has over 160° of contact angle, less than 10° of sliding angle, and the ability of self-cleaning. The materials we choose has strongly strengthened the structure.
Through the innovative manufacturing method, the mold can be easily extended to the big size. It’s very helpful to deal with the requirement of large quantity of molds and reduce the cost which can lead to the mass production.
This research also put the sample on the solar cell. It increases the efficiency of the solar cell by replenishing the light and index of refraction between air and solar cell. The high contact angle and low sliding angle let the solar cell has a protection of the pollution, preventing the solar cell become low efficiency from the accumulation of dust.
[1]A.B.D. Cassie and Baxter S., Wettability of Porous Surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
[2]A. Marmur, Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be ?, Langmuir vol. 19, no. 20, pp. 8343–8348, (2003).
[3]Abraham Marmur, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir vol. 20, 3517-3519(2004).
[4]B. Bhushan and Y. C. Jung, Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, Vol. 107, no. 10-11, pp.1033-1041,(2007).
[5]B. Bhushan, Y. C. Jung, and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Phil. Trans. R. Soc. 367(1894),1631-1672 (2009).
[6]B. Bhushan, and Y. C. Jung, and K. Koch, Self-Cleaning efficiency of artificial superhydrophobic surfaces. Langmuir. 25(5), 3240–3248.(2009).
[7]C. G. Furmidge, Studies at phase interfaces: Sliding of liquid drops on solid surfaces and a theory for spray retention, Journal of Colloid Science. 17(4), 309 (1962).
[8]C. Neinhuis and W. Barthlott, Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Annals of Botany. 79, 667-677 (1997).
[9]D. Richard and D. Quéré, Bouncing water drops, Europhys. Lett. vol. 50, pp. 769, (2000).
[10]D. Richard, C. Clanet and D. Quéré, Contact time of a bouncing drop, Nature. 417, 811 (2002).
[11]D. Quéré, Non-sticking drops, INSTITUTE OF PHYSICS PUBLISHING. 68, 2495–2532 (2005).
[12]D. Bartolo, C. Josserand and D. Bonn, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, J. Fluid Mech., 545, 329-338 (2005).
[13]D. Quéré, Bouncing transitions on microtextured materials, Europhys. Lett. 74, 306 (2006).
[14]G. McHale, N. J. Shirtcliffe, and M. I. Newton, Contact-Angle Hysteresis on Super-Hydrophobic Surfaces, Langmuir, 20, 10146-10149(2004).
[15]H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, Mechanics of hierarchical adhesion structures of geckos, Mechanics of Materials. 37, 275–285 (2005).
[16]Hua Zhou , Hongxia Wang , Haitao Niu , Adrian Gestos , Xungai Wang , and Tong Lin, Fluoroalkyl Silane Modifi ed Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating, Adv. Mater., 24, 2409–2412,( 2012).
[17]J. Bico, C. Marzolin and D. Quéré, Pearl drops. Europhys. Lett., 47(2),220–226(1999).
[18]J. Bico, U. Thiele and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 206(9), 41–46 (2002).
[19]J. P. Rothstein, Slip on Superhydrophoboic Surface. Annual Review of Fluid Mechanics. 42, 89–109 (2010).
[20]Jia Zhu, Ching-Mei Hsu, Zongfu Yu, Shanhui Fan, and Yi Cui., Nanodome Solar Cells with Efficient Light Management and Self-Cleaning, Nano Lett., 10, 1979–1984(2010).
[21]Jiale Yong, Feng Chen, Qing Yang, Dongshi Zhang, Hao Bian, Guangqing Du, Jinhai Si, Xiangwei Meng, and Xun Hou, Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays, Langmuir 29, 3274−3279(2012).
[22]K. Koch, B. Bhushan, and W. Barthlott, Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics, Progress in Materials Science. 54, 137-178 (2009).
[23]Lichao Gao and Thomas J. McCarthy, The “Lotus Effect” Explained: Two Reasons Why Two Length Scales of Topography Are Important, Langmuir, 22, 2966-2967(2006).
[24]Liangliang Cao, Andrew K. Jones, Vinod K. Sikka, Jianzhong Wu and Di Gao, Anti-Icing Superhydrophobic Coatings, Langmuir. 25(21), 12444-12448 (2009).
[25]Lidiya Mishchenko, Benjamin Hatton, Vaibhav Bahadur, J. Ashley Taylor, Tom Krupenkin,§andJoanna Aizenberg, Design of Ice-free Nanostructured Surfaces Based on Repulsion of Impacting Water droplets, ASC NANO, Vol 4, No. 12, (2010).
[26]Longquan Chen, Zhiyong Xiaob, Philip C.H. Chanc, Yi-Kuen Leea, Zhigang Li, A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf, Applied Surface Science 257 , 8857– 8863(2011).
[27]M. Miwa, Akira Nakajima, Akira Fujishima, Kazuhito Hashimoto, and Toshiya Watanabe, Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces, Langmuir, vol. 16, no. 13, pp. 5754–5760, (2000).
[28]Morteza Mohammadia, Sara Moghtadernejadb, Percival J. Grahamc and Ali Dolatabadi, Dynamic Impact behavior of water droplet on a superhydrophobic surface in the presence of stagnation flow, Applied Mechanics and Materials Vol. 232 (2012) pp 267-272(2012).
[29]Peichun Tsai, Sergio Pacheco, Christophe Pirat, Leon Lefferts, and Detlef Lohse, Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir, 25 (20), pp 12293–12298(2009).
[30]Q. S. Zheng, Y. Yu, and Z. H. Zhao, Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces, Langmuir, vol. 21, no. 26, pp. 12207–12212,(2005).
[31]R. N. Wenzel, Resistance of solid surface to wetting by water. Ind. Eng.Chem. 28, 988 (1936).
[32]Rioboo R., Marengo M. and Tropea C., Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids. 33, 112-124 (2002).
[33]Š. Šikalo, M. Marengo, C. Tropea and E.N. Ganić, Analysis of impact of droplets on horizontal surface, Experimental Thermal and Fluid Science. 25, 503-510 (2002).
[34]Šikalo Š., Tropea C. and Ganić E.N. Dynamic wetting angle of a spreading droplet, Experimental Thermal and Fluid Science. 29(7), 795-802 (2005).
[35]Sang Eon Lee, Dongjin Lee, Phillip Lee, Seung Hwan Ko, Seung S. Lee, Seong Uk Hong, Flexible Superhydrophobic Polymeric Surfaces with Micro-/Nanohybrid Structures Using Black Silicon, Macromol. Mater. Eng., 298, 311–317,(2013).
[36]Thomas Young, An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).
[37]W. E., Squamation and ecology of sharks, Courier Forschungsinstitut Senckenberg. 78, 1–255 (1985).
[38]X. F. Gao and L. Jiang, Biophysics: Water-repellent Legs of Water Striders, Nature. 432, 36 (2004).
[39]Xiying Li, Liqun Mao, and Xuehu Ma, Dynamic Behavior of Water Droplet Impact on Microtextured Surfaces: The Effect of Geometrical Parameters on Anisotropic Wetting and the Maximum Spreading Diameter, Langmuir 29, 1129−1138(2012).
[40]Y. Bar-Cohen, Biomimetics: biologically inspired technologies, Boca Raton, Taylor and Francis. ,(2006).
[41]Y. C. Jung and B. Bhushan, Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity, Nanotechnology, vol. 17, pp. 4970, (2006).
[42]Y. C. Jung and B. Bhushan, Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Nanotechnology. 17, 4970–4980 (2006).
[43]Yong Chae Jung and Bharat Bhushan, Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces, Langmuir, 24, 6262-6269(2008).
[44]Yong Chae Jung and Bharat Bhushan, Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces, Langmuir, 25(16), 9208–9218(2009).
[45]Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, 18, 5815-5822(2002).
[46]廖士貴, 國立成功大學機械工程學系碩士論文 (2010).
[47]陳彥君, 國立成功大學機械工程學系碩士論文 (2011).
[48]石嘉嘉, 國立成功大學機械工程學系碩士論文 (2012).
[49]蕭舜心, 國立成功大學機械工程學系碩士論文 (2013).
[50]楊家明, 國立成功大學機械工程學系碩士論文 (2014).
[51]廖玉晨, 國立成功大學機械工程學系碩士論文 (2015).