| 研究生: |
馬德達 Mazumdar, Debayan |
|---|---|
| 論文名稱: |
使用ANSYS進行客製化的三維度反應器設計 Customized 3D reactor design using ANSYS |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 計算流體動力學 、殼管熱交換器 、化學動力學 、液體分佈設計 、二氧化碳吸收 |
| 外文關鍵詞: | Computational Fluid Dynamics, Chemical kinetics, Shell and Tube heat exchanger, CO2 Absorption, Liquid Distribution Design |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
計算流體動力學(CFD)最近變得很流行。提供對流體行為及其與其流域相互作用的詳細了解。近年來,它已成為設計和各種分析的重要工具。 Ansys Simulation Software® 是一種流行的 CFD 介面,用於研究工程應用的不同場景,例如空氣動力學、結構行為、流體動力學、流變行為等。本研究的重點是使用 Ansys® 在三個維度上對兩個獨特的工業場景進行建模。我們的新穎方法包括對設計和安全的詳細研究,這些方面通常很難在理論上確定。流行的工業化學現象,如放熱反應和錯流流體吸收,已在兩個獨立的部分(即A 和B)下進行了詳細研究。以進行均相放熱催化反應。使用先前報告的數據再現反應動力學,並在驗證後優化其他參數。兩個單獨的案例比較了殼程和管程對苯酚生產的影響。結論是管側具有更好的性能。 B 部分描述了液體分佈設計對吸收塔運作的影響。從頭開始創造了三種獨特的設計。錶壓報告被考慮進行驗證。可以看出,設計 1 最適合有效的 CO2 吸收。
Computational fluid dynamics (CFD) have become popular in recent days. Providing a detailed understanding of fluid behaviour and its interaction with its flow domain. In recent years it has become a critical tool for design and various analysis. Ansys Simulation Software® is a popular CFD interface used to study different scenarios for engineering applications such as aerodynamics, structural behaviour, hydrodynamics, rheological behaviour and many more. This study focuses on using Ansys® to model two unique industrial scenarios in three dimensions. Our novel approach includes detailed study for design and safety aspects which are generally difficult to determine theoretically. Popular industrial chemical phenomenon such as exothermic reactions and cross current fluid absorption have been studied in detail under two separate sections, namely A & B. Section A models a customized two pass shell and tube heat exchanger to carry out homogenous exothermic catalytic reactions. Reaction kinetics were reproduced using previous reported data and other parameters were optimized post validation. Two separate cases comparing the effect of shell and tube side on phenol production were noted. The tube side was concluded to have better performance. Section B describes the effect of liquid distribution design on the operation of an absorber column. Three unique designs were created from scratch. The gauge pressure report was considered for validation. It was seen that design 1 was most suited for efficient CO2 absorption.
1. Di Nardo, A., G. Calchetti, C. Bassano and P. Deiana (2021). "CO2 methanation in a shell and tube reactor CFD simulations: high temperatures mitigation analysis." Chemical Engineering Science 246.
2. Dong, W., M. Fang, Z. Liu, T. Han, L. Gao, T. Wang and Q. Wang (2022). "Study on chemical absroption absrober with polypropylene packing for Guohua Jinjie CCS demonstration project." International Journal of Greenhouse Gas Control 114.
3. Gbadago, D. Q., H.-T. Oh, D.-H. Oh, C.-H. Lee and M. Oh (2020). "CFD simulation of a packed bed industrial absorber with interbed liquid distributors." International Journal of Greenhouse Gas Control 95: 102983.
4. Hanusch, F., M. Künzler, M. Renner, S. Rehfeldt and H. Klein (2019). "Liquid distributor design for random packed columns." Chemical Engineering Research and Design 147: 689-698.
5. Joly, J. F., Y. Haroun and L. Raynal (2015). "Use of Computational Fluid Dynamics for Absorption Packed Column Design." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 71(3).
6. Kuchi, G., V. Ponyavin, Y. Chen, S. Sherman and A. Hechanova (2008). "Numerical modeling of high-temperature shell-and-tube heat exchanger and chemical decomposer for hydrogen production." International Journal of Hydrogen Energy 33(20): 5460-5468.
7. Lee, I.-B. and S. Park (2017). "Improving Tube Design of a Problematic Heat Exchanger for Enhanced Safety at Minimal Costs." Energies 10(8).
8. Levin, M. E., N. O. Gonzales, L. W. Zimmerman and J. Yang (2006). "Kinetics of acid-catalyzed cleavage of cumene hydroperoxide." J Hazard Mater 130(1-2): 88-106.
9. Moussiere, S., A. Roubaud, O. Boutin, P. Guichardon, B. Fournel and C. Joussot-Dubien (2012). "2D and 3D CFD modelling of a reactive turbulent flow in a double shell supercritical water oxidation reactor." The Journal of Supercritical Fluids 65: 25-31.
10. Mukherjee, A., J. A. Okolie, A. Abdelrasoul, C. Niu and A. K. Dalai (2019). "Review of post-combustion carbon dioxide capture technologies using activated carbon." J Environ Sci (China) 83: 46-63.
11. Niegodajew, P. and D. Asendrych (2016). "Amine based CO2 capture–CFD simulation of absorber performance." Applied Mathematical Modelling 40(23-24): 10222-10237.
12. Ozden, E. and I. Tari (2010). "Shell side CFD analysis of a small shell-and-tube heat exchanger." Energy Conversion and Management 51(5): 1004-1014.
13. Parry, A. J., P. C. Eames and F. B. Agyenim (2013). "Modeling of Thermal Energy Storage Shell-and-Tube Heat Exchanger." Heat Transfer Engineering 35(1): 1-14.
14. Pham, D. A., Y.-I. Lim, H. Jee, E. Ahn and Y. Jung (2015). "Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO2 removal." Chemical Engineering Science 132: 259-270.
15. Schmidt, R. J. (2005). "Industrial catalytic processes—phenol production." Applied Catalysis A: General 280(1): 89-103.
16. Sutjahjo, F., L. Medri, S. Alyani and C. L. Budhy (2024). "Enhancing Energy Efficiency of Cumene Production Through Reactor Output Recycling Modification in a Heat Exchanger." Journal of Chemical Engineering Research Progress 1(1): 64-73.
17. Wang, Y., L. Zhao, A. Otto, M. Robinius and D. Stolten (2017). "A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants." Energy Procedia 114: 650-665.
18. Weber, M., R. Hoffmann and M. Weber (2019). "Some safety aspects on the cleavage of cumene hydroperoxide in the phenol process." Process Safety Progress 38(4).