簡易檢索 / 詳目顯示

研究生: 劉家強
Liu, Chia-Chiang
論文名稱: NBO方法研究過渡金屬錯合物M(CO)42+、M(CO)3Lq之回饋鍵結及反位影響[M=Ni2+, Pd2+, Pt2+;L=F-, Cl-, Br-, H2O, CN-, NH3, NMe3, PMe3, P(OMe)3, PF3]
Studies of π-Back-donation and Trans-influence in Group 10 Transition-metal Carbonyl Complexes M(CO)42+、M(CO)3Lq by NBO Method [M=Ni2+, Pd2+, Pt2+;L=F-, Cl-, Br-, H2O, CN-, NH3, NMe3, PMe3, P(OMe)3, PF3]
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 反位影響NBO方法回饋鍵結
外文關鍵詞: Trans-influence, π-Back-donation, NBO
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用密度泛函理論(DFT)搭配天然鍵性論(NBO)分析法對過渡金屬羰基錯合物M(CO)42+、M(CO)3Lq[M=Ni2+, Pd2+, Pt2+;L=F-, Cl-, Br-, H2O, CN-, NH3, NMe3, PMe3, P(OMe)3, PF3]之CO 2π及碳上的孤對電子(5σ)的電子雲密度進行探討,並由E(2)值分析得知金屬回饋鍵結趨勢。
    研究中我們發現,在M(CO)42+中CO 2π電子雲密度的大小除了必須考慮金屬d軌域與CO 2π軌域有交互作用外,相鄰碳上的孤對電子(5σ)或金屬碳鍵鍵結電子與CO 2π亦有頗為可觀的交互作用,扣除了這種次要的交互作用後的錯合物M(CO)42+之CO 2π電子雲密度的大小依序為5d>4d>3d,也就是第10族過渡金屬的π-回饋鍵結趨勢皆為Pt>Pd>Ni。
    根據反位影響(trans influence)理論,由反位LP(C)上的[5σ]值去推測出這些配位基的σ-donor能力依序為P(OMe)3>PMe3>CN->Br->Cl->F->NMe3>NH3>H2O,此結果與無機教科書上所提配位基的σ-donor 能力大小順序完全符合,可證明此理論計算方法是具有可信度的。
    更有意義的是我們以NBO方法對M(CO)3L2+ [L= PF3, P(OMe)3, PMe3, NMe3]進行研究,顯示出主要接受金屬回饋鍵結的軌域為σ*P-Y( P-Y的σ反鍵結軌域),並且以取代基中σ*P-Y鍵結極化(polarized extent)的情形及重新混成後σ*P-Y中的p-orbital character的變化量來判斷這些配位基的p back-donation能力大小依序為PF3>P(OMe)3 > PMe3 > NMe3。

    We studies of CO [2p] and LP(C) [5s] in group 10 transition-metal carbonyl complexes M(CO)42+、M(CO)3Lq [M=Ni2+, Pd2+, Pt2+;L=F-, Cl-, Br-, H2O, CN-, NH3, NMe3, PMe3, P(OMe)3, PF3] by NBO analysis.
    This is a subsequent study to cis 5s(CO)2p(CO) hyperconjugation observed in 6B M(CO)6. We have found this BOBO donor-acceptor interaction, in the order 3d>>5d>4d similar to that found in M(CO)6, but considerably smaller than in 6B M(CO)6. Therefore, the net result of 2p population originally in the order 3d<4d<5d .
    We have then evaluated the term “trns-influence” in M(CO)3L [M=Ni2+, Pd2+, Pt2+;L=F-, Cl-, Br-, H2O, CN-, NH3, NMe3, PMe3, P(OMe)3]by analyzing [5σ]. The well-known sequence, P(OMe)3>PMe3>CN->Br->Cl->F->NMe3>NH3>H2O , has been found and supplies another merit of the NBO method .
    More significantly, the antibonding BO, s*P-Y plays a more important role than the 3d-AO of P-atom. The p-accepting capabilities of PF3, P(OMe)3, PMe3, depend on the polarized extent of PY (Y= C, O or F) bonding and the 3p-atomic orbital characters. Based on this rehybridization argument, the sequence of p-back-donation strengths is PF3>P(OMe)3 > PMe3.

    摘要............................................................................................................................................I ABSTRACT.............................................................................................................................II 目錄.........................................................................................................................................III 表目錄.....................................................................................................................................IV 圖目錄......................................................................................................................................V 重要的英文縮寫和其中文譯名..............................................................................................VI 第一章 緒論..............................................................................................................................1 第二章 理論背景......................................................................................................................3 2-1 理論計算原理.............................................................................................................3 2-1.1薛丁格(Schrödinger)波方程式12......................................................................4 2-1.2分子軌域理論(Molecular orbital theory)13,14...................................................5 2-1.3 基底集合(Basis set)15......................................................................................6 2-1.4 密度泛函理論(Density Functional Theory)9...................................................9 2-1.5、NBO分析法10..............................................................................................12 2-2 錯合物之鍵結模型...................................................................................................17 2-3 雲散效應(nephelauxetic effect)25,26,27......................................................................20 2-4 NMR偵測金屬羰基錯合物之CO 2π電子雲密度1,6,28...........................................21 2-5 反位影響(trans influence)41......................................................................................26 第三章 計算過程及所選擇之計算方法................................................................................27 3-1 原始計算流程...........................................................................................................27 3-2 計算過程與分法.......................................................................................................29 第四章 結果與討論................................................................................................................31 4-1 計算方法之探討.......................................................................................................31 4-2 金屬羰基錯合物M(CO)42+之回饋鍵結...................................................................32 4-3 M(CO)3Lq [M=Ni2+, Pd2+, Pt2+]金屬回饋鍵結與反位影響之探討...............38 4-3.1 由反位CO的[2π]值來探討回饋鍵結現象...................................................38 4-3.2 由反位碳上的孤對電子[5σ]值來探討反位影響現象.................................39 4-4 M(CO)3L2+ [L= PF3, P(OMe)3, PMe3, NMe3]金屬回饋鍵結之探討.......................41 4-4.1 以NBO二極微擾能量[ E(2)值]分析配位基L..............................................41 4-4.2 NBO研究配位基中σ*P-Y鍵結極化及重新混成的變化情形61...................42 4-5 M(CO)3X+ [M= Ni2+, Pd2+, Pt2+ ; X-=F-,Cl-,Br-]金屬回饋鍵之探討........................45 第五章結論..............................................................................................................................48 附表 NBO資料錯合物M(CO)3Lq中以CO π*為Accepting BO之主要交互作用.................71 參考文獻.................................................................................................................................77 III

    1. S. P. Wang, P. Yuan and M. Schwartz; Inorg. Chem., 29, 484(1990).
    2. J. E. Huheey, R. L. Keiter and E. A. Keiter; “Inorganic chemistry: principles of structure and reactivity ”, 4th ed. , New York(1993).
    3. G. Frenking and N. Frhlich; Chem. Rev., 100, 717(2000).
    4. A. Diefenbach, F. M. Bickelhaupt and G. Frenking; J. Am. Chem. Soc., 122, 6449(2000).
    5. 黃國棠, 國立成功大學碩士論文(2004).
    6. S. P. Wang, M. G. Richmond, and M. Schwartz; J. Am. Chem. Soc., 114, 7595(1992).
    7. 黃明志, 國立成功大學碩士論文(2001).
    8. (a) A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett and J. M. Campbell; J. Organomet. Chem., 14, 279 (1968) (b) A. D. Beny, E. R. Corey, A. P. Hagen, A. G. MacDiarmid, F. E. Saalfeld and B. B. Wayland; J. Am. Chem. Soc., 92, 1940(1970) (c) F. E. Saalfeld, M. V. McDowell and A. G. MacDiarmid; J. Am. Chem. Soc., 92, 2324(1970)
    9. P. Hohenberg , W. Kohn, “Inhomogeneous Electron Gas”, Physical Review, 136, B864(1964).
    10. A. E. Reed, L. A. Curtiss , F. Weinhold; Chem. Rev. , 88, 899-926(1988).
    11. Mogi, K.; Sakai, Y.; Sonoda, T.; Xu, Q.; Souma, Y. J. Phys. Chem. A.; (Article); 2003; 107(19); 3812-3821.
    12. W. J. Hehre, L. Radom and P. v. R. Schleyer; “ Ab Initio Molecular Orbital Theory,” Canada (1986)
    13. W. J. Hehre, L. Radom, P. V. R. Schleyer, J. A. Pople; “ab Initio Molecular Orbital Theory”, Canada(1986).
    14. 謝從卿物理化學
    15. S. Huzinaga; “Gaussian Basis Sets for Molecular Calculations,” Elsevier, New York(1984).
    16. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids(McGraw-Hill, New York, 1974).
    17. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, 140, A1133(1965).
    18. A. D. Becke, Phys. Rev. A, 38, 3098(1988).
    19. J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy,” Phys. Rev. B, 45, 13244(1992).
    20. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, 37, 785(1988).
    21. R. S. Mulliken; J. Chem. Phys., 23, 1833, 1841, 2338, 2343(1955)
    22. (a) M. J. S. Dewar, Bull. Soc. Chim. Fr. 1951. 18, C79.(b) J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953. 2929.
    23. 無機中譯本
    24. (a)K. Nakamoto, “Infrared and Raman spectra of inorganic and coordination compounds”, Wiley, New York(1986) (b)S. R. Freichs, B. K. Stein and J. Am. Chem. Soc., 109, 5558(1987).
    25. B. Rosenblum and A. H. Nethercot; J. Chem. Phys., 27, 828(1957).
    26. Y. Hsieh, J. C. Koo and E. L. Hahn; Chem. Phys. Lett., 13, 563(1972).
    27. D. F. Shriver, P. W. Atkins and C. H. Langford, “Inorganic Chemistry”, University Press: Oxford , pp.445-446(1990).
    28. K. S. Wang, D. Wang, K. Yang, M. G. Richmond, and M. Schwartz; Inorg. Chem.,34, 3241-3244(1995)
    29. F. A. Cotton and C. S. Kraihanzel; J. Am. Chem. Soc., 84, 4432(1962)
    30. P. S. Baterman;”Metal Carbonyl Spectra”, Academic Press, New York(1975)
    31. P. S. Baterman; Structure and Bonding, 26, 1(1976)
    32. J. P. Hickey, J. R. Wilkinson and L. J. Todd; J Organomet. Chem., 179, 159(1979).
    33. (a) G. M. Bodner, S. B. Kahl, K. Bork, B. N. Storhoff, J. E. Wuller and L. J. Todd; Inorg. Chem., 12 1071(1973). (b) G. M. Bodner and L. J. Todd; Inorg. Chem., 13 1335(1974).
    34. W. Buchner and W. A. Schenk; J. Magn. Reson., 48 ,148(1982).
    35. M. Karplus and J. A. Pople; J. Chem. Phys.,38, 2803(1963).
    36. (a) T. P. Das and E. L. Hahn; ”Nuclear Quadrupole Resonance Spectroscopy,” Academic Press, New York(1958). (b) E.A C. Lucken; “ Nuclear Quadrupole Coupling Constants,” Academic Press, New York(1969).
    37. (a)A. G. Redfield; Phys. Rev., 130, 589(1963). (b) R. E. Slusher and E. L. Hahn; Phys. Rev. Lett., 12, C508(1964). (c) R. E. Slusher and E. L. Hahn; Phys. Rev., 166, 332(1968)
    38. W. T. Huntress; Adv. Magn. Reson., 4, 1(1970).
    39. R. T. Boere and R. G. Kidd; Ann. Repts. NMR Spectrosc., 13, 319(1982).
    40. B. Halle, T. Anderson, S. Forsen and B. Lindman; J. Am. Chem. Soc., 103, 500(1981).
    41. T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev.1973,10,335.
    42. Gaussian 98 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian. Inc., Pittsburgh PA, (1998).
    43. NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Cerpenter and F. Weinhold. Cited in reference 54.
    44. (a) P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985). (b) W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985). (c) P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
    45. A. Jost and B. Ree; Acta Crystallogy. , B31, 2649(1975)
    46. G. Herzberg; Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules; Krieger: Malabar(1989).
    47. Topics in Current Chemistry; R. F. Nalewajski, Ed.; Springer-Verlag, Berlin, Vols. 180-183(1996).
    48. Density Functional Methods in Chemistry; J. Labanowski, J. Andzelm, Eds.; Springer-Verlag: Heidelberg(1991).
    49. T. Ziegler;Chem. Rev., 91, 651(1991).
    50. R. G. Parr and W. Yang; Density Functional Theory of Atoms and Molecules; Oxford University Press, New York(1988).
    51. S. Stromberg, M. Svensson, K. Zetterberg, Organometallics; (Article); 1997; 16(14); 3165-3168.
    52. A.W. Ehlers, S. Dapprich, S. F. Vyboishchikov and G. Frenking; Organometallics., 15, 105(1996).
    53. K. Mogi, Y. Sakai, T. Sonoda, Q. Xu and Y. Souma; J. Phys. Chem. A, 107, 3812(2003)
    54. T. Ziegler, V. Tschinke and C. Ursenbach; J. Am. Chem. Soc., 109, 4825(1987).
    55. F. Calderazzo, D. D. Belli, Inorg. Chem. 1981, 20, 1310.
    56. J. Uddin, C. Boehme and Frenking; Organometallics., 19, 571(2000).
    57. (a) K. L. Kunze and E. R. Davidson; J. Phys. Chem., 96, 2129(1992). (b) F. C. Machado and E. R. Davidson; J. Phys. Chem., 97, 4397(1993).
    58. D. F. Shriver, P. W. Atkins and C. H. Langford, “Inorganic Chemistry”, University Press: Oxford (1990).
    59. Gary L. Miessler and Donald A. Tarr; Inorganic Chemisty Third Edition,Pearson Education International,New Jersey,2004.
    60. A. G. Orpen, N. G. Connelly, J. Chem. Soc. Chem. Commun. 1985, 1310-1311.
    61. Wen-Yi Hsu, Wei-Lin Su, and Shao-Pin Wang ;尚未發表.
    62. The term “rehybridization” quoted for changes of %p is borrowed from “I.V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc. 2003, 125, 5973-5987.”
    63. R. F. Fenske, K.G. Caulton, D. D. Radtka and C. C. Sweeney; Inorg. Chem, 5, 960(1966).

    下載圖示 校內:2009-07-27公開
    校外:2011-07-27公開
    QR CODE