| 研究生: |
莊仲欽 Chuang, Chung-Chin |
|---|---|
| 論文名稱: |
於不同風向入流下太陽能集熱板升阻力效應之數值研究 Numerical studies of the lift and drag effects on a solar collector during wind incidence |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 共同指導教授: |
徐子圭
Hsu, Uzu-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 太陽能集熱板 、計算流力 、入流風向角 、升力 、阻力 |
| 外文關鍵詞: | Solar collector, CFD, Inflow, Wind incidence angle, Lift, Drag |
| 相關次數: | 點閱:148 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,人類工業的發展與經濟活動的熱絡,消耗大量的石化燃料,但石化能源日益枯竭,發展核能的潛在風險,使得再生能源的應用,成為現今的趨勢。再生能源的種類繁多,台灣地區以太陽能與風力能較為普遍,太陽能之應用以安裝太陽能熱水器為主,然而颱風為台灣地區主要之天然災害之一,且太陽能熱水器多安裝於無遮蔽物之建築物頂端,自然界風場因季節、安裝區域四周環境等因素,造成風向改變,進而容易對太陽能熱水器產生損壞,因此本研究針對不同風向角度進行探討。
本文以原尺寸60%單片集熱板作為研究幾何模型,利用商用計算流體力學套裝軟體 Fluent6.3.26為計算工具,選用紊流模式為Realizable k-ε模式,以有限體積法壓力基算則為數值方法,首先利用Fluent給定不同Turbulent Intensity與Length Scale之條件,以設定條件Turbulent Intensity = 11.7%與Length Scale = 0.12 m驗證程式之可行性,接著進行集熱板在不同入流風向角度(θ=15°、22.5°、30°、37.5°)以及固定入流風向角θ= 22.5°時,安裝不同尺寸導流板的模擬。
由數值模擬結果,發現上表面低壓區面積隨著入流角度增加有先增加後減少之現象,最大低壓面積發生在風向角θ=30°時,當θ達37.5°時低壓面積遞減。下板面高壓區域集中在下板面左側,面積隨θ角度增加而增加,並集中於板面左側,整體升力因前視截面展弦比改變,隨θ角度增加亦有增加趨勢,阻力則因垂直入流截面積改變而逐漸降低。安裝不同尺寸導流板後,入口氣流直接衝擊板面,使集熱板之上下表面壓力差降低,當導流板長度增加,遮蔽效果變大,導流板尺寸增加使升力逐漸降低。
In recent years, the industrial and economic development of the human consume a lot of fossil fuels. But the fossil energy is getting depleted, the development of nuclear energy has some potential risks. The application of renewable energy becomes current trends. There are several kinds of renewable energy. In Taiwan, solar energy and wind energy are more popular. The application of solar energy frequently used in installation of solar water heater. However, the typhoon is one of the nature disasters in Taiwan. Solar water heater is usually installed on the top of buildings which is without any cover. The wind directions changes due to some factor of seasons or surroundings of the installed location. That may destroy solar water heaters. So we discuss the effect of heat collector under several wind directions.
In this study, a single plate of heat collector which is 60% of the original size is used as the geometric model. We use a commercial CFD software "Fluent 6.3.26" for calculation which is a pressure-based finited volume scheme. The Realizable k-ε turbulent model is applied. Owing to the simulated data close to the experiment data, the turbulent intensity and length scale are 11.7% and 0.12m individually. The studies are consist of a solar collector with inflow angle (θ=15°、22.5°、30°、37.5°)and with different guide plate atθ=22.5°
The result shows that low pressure area on upper surface is expanding when inflow angle increased to 30° ,and it’s reducing when inflow angleθ=37.5°. The high pressure area on the lower surface is increased near the left side. Total lift force is increased by the aspect ratio of the cross section in front view. Total drag force is reduced by the changes of the area on the vertical section of the inflow. With a guide plate, the inflow impacts the plates directly, and can reduce the differential pressure between the upper and lower surface on a solar collector. When length of guiding plate increases, shielding effect is more augmented. When the guide plate shorted, the lift force is also increased.
[1] 國際油品價格趨勢圖2010~2012,經濟部能源局網站
[2] 福島核子事故應變措施-2011年,行政院原子能委員會
[3] 中華民國能源統計手冊,經濟部能源局網站
[4] 氣象百科,中央氣象局全球資訊網
[5] 蕭葆羲,“風工程”,科技圖書,台灣,(2005)
[6] 劉怡眉、林怡君、張克勤、鍾光民,“低風阻太陽能熱水器之設計測試”,航空太空及民航學刊,第38卷第1期49~53頁(2006)
[7] 陳俊谷,“降低太洋能熱水風損之實驗研究”,國立成功大學航空太空研究所碩士論文(2006)
[8] 修治平,“導流板對不同角度集熱板之空氣動力特性研究”,國立成功大學航空太空研究所碩士論文(2006)
[9] C.C. Chou, K.C. Chang, K.M. Chung, Y.J. Chen, “Wind loads on Solar Collector Models: Blockage Effects,” 13th International Conference on Wind Engineering, July 10-15 (2011)
[10] 王偉政,“太陽能熱水器之升力與阻力數值模擬分析研究”,國立成功大學航空太空研究所碩士論文(2010)
[11] Keh-Chin Chang, Uzu-Kuei Hsu, Wei-Cheng Wang, Ron-HwaTyan, “Flow Visualization and Wind Uplift Analysis of a Suspended Solar Water Heater,” Procedia Engineering, Vol.31, pp.3- 8 (2012)
[12] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. “A New - Eddy-Viscosity Model for High Reynolds Number TurbulentFlows”, Model Development and Validation. Computers Fluids, 24(3):227-238, (1995)
[13] Suhas V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corp.(1980)
[14] B. E. Launder and D. B. Spalding,“The Numerical Computation of Turbulent Flows”,Computer Methods in Applied Mechanics and Engineering, 3:269-289,(1974)
[15] T. J. Barth and D. Jespersen,“ The design and application of upwind schemes on unstructured meshes”, Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, (1989)
[16] 蔡文彬、林秀穎,”數值方法:工程上的應用”,高立圖書,(2011)
[17] Fluent Inc., Fluent User's Guide, Fluent Inc., (2006)
[18] 陳奕潤,”風洞阻塞比及自由流紊流強度對太陽能板風力負載之影響”,國立成功大學航空太空研究所碩士論文(2011)