簡易檢索 / 詳目顯示

研究生: 顏克明
Yan, Ker-ming
論文名稱: 利用定點突變研究大白鼠眼球αA-水晶體蛋白之結構與活性及稻米芽鞘胰蛋白酶抑制劑之純化與鑑定
Structure-Activity Study of Rat Lens αA-Crystallins using Site-Directed Mutagenesis and Purification and Characterization of Protease Inhibitors from Rice Coleoptiles
指導教授: 黃福永
Huang, Fu-Yung
王小萍
Wang, Shao-Pin
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: αA-水晶體蛋白稻米芽鞘定點突變伴護活性非競爭性的抑制競爭性的抑制Bowman-Birk 蛋白酶抑制劑
外文關鍵詞: Non-competitive inhibition, Competitive inhibition, Bowman-Birk protease inhibitor, Site-directed mutagenesis, αA-crystallin, Chaperone activity, Rice coleoptiles
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Part 1: 為了探討疏水性或電荷在αA-水晶體蛋白第71位置上對分子伴護的效應,我們比較分析αA-水晶體蛋白野生種和在N-端帶有的額外11個殘基包含六個組氨酸(His)標示的兩個穾變種F71W 和 F71R蛋白質的活性。在誘導胰島素聚集的實驗中顯示,這額外11個殘基對類伴護活性影響很小。 F71W突變種的活性和野生種蛋白相似;而F71R的活性卻明顯的降低。 F71W及野生種之活性隨莫耳數之增加而增加,然而 F71R 之活性卻隨著莫耳數之增加而急速減少。ANS 發射螢光的測量顯示 F71R 有最高的表面疏水性,推測可能是在這個位置上的正電荷造成立體組態的改變而使疏水性增加。熱穩定性實驗亦觀察到因疏水性的增加,而導致高分子量聚集的形成 (>2000 KDa)。 在熱穩定性的研究顯示F71W 比F71R及野生種較具熱穩定性。在不同溫度對類伴護活性的實驗研究中顯示,單體及寡聚合體 (650 kDa) 是造成伴護官能的主要因素,而表面疏水性並不是伴護活性存在的必要條件。近紫外光圓二色光譜的實驗研究顯示 β-摺板型結構(β-sheet) 是所有三個水晶體蛋白二級結構的主要成份及 F71R 具有高百分比的任意型結構(random coil)。
    part 2: 從快速生長的芽鞘中,有一分子量為15 kDa 的Bowman-Birk 蛋白酶抑制劑(BBIrc)已經被純化,且利用部分N 端序列定
    序、液相層析-質譜儀(LC-MS)和基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF MS),已鑑定出其為一133 胺基酸多肽鏈(BBIrc1)。酵素動力學研究指出,此蛋白酶抑制劑對胰蛋白酶表現出競爭性的抑制,其解離常數為4.0 x 10-7M,而對α-胰凝乳蛋白酶表現為非競爭性的抑制,其解離常數為9.3 x 10-7 M。西方墨點法的結果顯示,由15 kDa 蛋白製備而成的抗血清,會分別辨識15 kDa 和另一25 kDa 的蛋白質。在有氧和低氧條件下15 kDa 蛋白的表現量幾乎維持恆定;然而,當快速伸長的芽鞘由低氧移至有氧環境時,25 kDa蛋白的表現會隨時間之增加而提升,這結果顯示稻米芽鞘BBI 蛋白的表現模式與發育過程中的形態變化有關。25 kDa
    蛋白前9 個氨基酸的部分N 端序列為AEAPPRPPK 和 RBBI3-1 的第37 至45 序列相同,且在液相層析串聯質譜研究亦發現有分子量的片段符合於RBBI3-1。此25 kDa 蛋白也與牛之胰蛋白酶(Bovine trypsine)有專一性結合,這蛋白質之表現模式首次發現:「氧氣」能選擇性地增加特定BBI 基因表現,本研究結果表示稻米芽鞘中BBI 蛋白質可能扮演著多重生物性功能。

    Part 1: In order to explore whether hydrophobicity or charge at 71th residue is important for chaperone-like activity, wild type (wt) and two mutant αA-crystallins, F71W and F71R, with extra 11 residues including 6 histidines tagged at the N-terminal were prepared. Chaperone-like activity toward dithiotreitol (DTT) induced insulin aggregation showed the 11 extra residues had little effect. The activity for F71W was as active as the wild type; while F71R was much less active. For wild type and F71W, the activity increased with the increase of molar quantity; surprisingly, for F71R it caused a drastic decline. ANS fluorescence measurements showed F71R had the highest surface hydrophobicity, suggesting positive charge at this site caused the conformational alteration leading to the increase of hydrophobicity and this hydrophobicity resulted in the formation of high molecular weight aggregates (>2000 kDa) observed from the thermal stability study. Thermal stability study revealed F71W was the most thermally stable crystallin. Chaperone-like activity studies at various temperature suggested the monomer and oligomer, 650 kDa, were responsible for chaperone function and surface hydrophobicity was not the prerequisite for activity. Near-UV CD studies showed β-sheet was the major secondary structure for all three crystallins and F71R had higher percentage of random coil.
    part 2: A 15 kDa rice Bowman-Birk inhibitor from fast elongating coleoptiles has been purified and identified using partial N-terminal sequence, LC-MS, and MALDI-TOF MS as a 133 amino acid polypeptide (BBIrc1). The kinetic study shows this protease inhibitor displays competitive inhibition toward trypsin with Ki of 4.0 x 10-7 M and non-competitive inhibition toward α-chymotrypsin with Ki of 9.3 x 10-6 M. The Western blotting results of the anti-sera raised against this 15 kDa protein showed that this anti-serum recognized two BBI proteins with molecular size around 15 kDa (BBIrc1) and 25 kDa (BBIrc2) and the quantity of the expression of 15 kDa was nearly constant under both aerobic and hypoxia conditions; however, the 25 kDa expression was greatly up-regulated when the fast elongating coleoptiles were transferred from hypoxia conditions to the aerobic conditions. The results indicate that the expression pattern of BBIs proteins correlated to the developmental stage in terms of morphological changes. The partial N-terminal sequence of the first 9 amino acids of 25 kDa was AEAPPRPPK, which has the same amino acid sequence of 37th to 45th of RBBI3-1 and LC-MS study shows that several mass fragments fit to RBBI3-1. The 25 kDa protein also shows specific binding to bovine trypsin.
    This expression pattern demonstrates for the first time that environmental factor, oxygen, can select and enhance specific BBI gene expression. The results of this study suggest BBI proteins might play multiple biological functions inside rice coleoptiles.

    目 錄 第一部份 利用定點突變研究大白鼠眼球αA-水晶體蛋白之結構與活 性...............................................1 英文摘要. ............................................... 2 中文摘要... ..............................................4 一、背景介紹............................................. 5 二、實驗材料與方法....................................... 8 (一) 材料.............................................8 (二) 儀器設備....................................... 11 (三) 質體的建造..................................... 12 (四) 不同誘導時間的蛋白質表現........................14 (五) 野生種和突變種水晶體蛋白的表現和純化........... 15 (六) ANS螢光光譜測定................................ 15 (七) 圓二色光譜分析的研究............................16 (八) 凝膠過濾層析分離法............................. 17 ( 九) 伴護活性......................................17 三、實驗結果.............................................19 (一) 蛋白質的表現與純化..............................19 (二) αA 水晶體蛋白苯氨萘磺酸(ANS)螢光分析..........20 (三) 溫度對水晶體蛋白聚集的影響......................21 (四) 溫度對野生型和突變株之 αA 水晶體蛋白的圓二色光譜分 析之影響........................................22 (五) 類似伴護活性分析................................25 四、結果討論.............................................27 五、結論.................................................30 六、參考文獻.............................................31 圖表目錄................................................. 圖一、αA 水晶體蛋白隨時間表現之一維電泳圖..........39 圖二、αA 水晶體蛋白突變株 F71W 不同誘導時間蛋白質表現 之一維電泳圖..................................40 圖三、αA 水晶體蛋白突變株 F71R 不同誘導時間蛋白質表現 之一維電泳圖..................................41 圖四、αA 水晶體蛋白經HiTrap Chelating HP column 之層析 圖............................................42 圖五、αA 水晶體蛋白經HiTrap Chelating HP column 之一維 電泳圖........................................43 圖六、αA 水晶體蛋白突變株 F71W 經HiTrap Chelating HP column 之層析圖...............................44 圖七、αA 水晶體蛋白突變株 F71W 經HiTrap Chelating HP column 之一維電泳圖...........................45 圖八、αA 水晶體蛋白突變株 F71R 經HiTrap Chelating HP column 之層析圖...............................46 圖九、αA 水晶體蛋白突變株 F71R 經HiTrap Chelating HP column 之一維電泳圖...........................47 圖十、ANS 發射螢光光譜分析: αA-野生種蛋白質在不同溫度 之螢光分析....................................48 圖十一、ANS 發射螢光光譜分析:突變種αA-F71W蛋白質在不 同溫度之螢光分析..............................49 圖十二、ANS 發射螢光光譜分析:突變種αA-F71R 蛋白質在不 同溫度之螢光分析..............................50 圖十三、膠體管柱層析分離法:αA-野生種蛋白質在不同溫度 下之膠體管柱層析圖............................51 圖十四、膠體管柱層析分離法:突變種αA-F71W蛋白質在不同 溫度下之膠體管柱層析圖........................52 圖十五、膠體管柱層析分離法:突變種αA-F7R蛋白質在不同溫 度下之膠體管柱層析圖...........................53 圖十六、遠紫外光圓二色光譜:在室溫下 αA-野生種, F71W and F71R 之遠紫外光圓二色光譜圖................54 圖十七、近紫外光圓二色光譜:在室溫下 αA-野生種, F71W and F71R 之近紫外光圓二色光譜圖................55 圖十八、近紫外光圓二色光譜:在不同溫度下 αA-野生種, F71W and F71R 之近紫外光圓二色光譜圖............56 圖十九、 DTT 誘導胰島素聚集的類伴護活性:在室溫下,水晶 體蛋白對胰島素的莫耳數比為2:1之伴護活性圖......57 圖二十、 DTT 誘導胰島素聚集的類伴護活性:在室溫下, 野生 種αA-水晶體蛋白對胰島素以不同莫耳數比之伴護活性 圖.............................................58 圖二十一、 DTT 誘導胰島素聚集的類伴護活性:在室溫下,突 變種 αA-F71W 水晶體蛋白對胰島素以不同莫耳數比之 伴護活性圖.....................................59 圖二十二、 DTT 誘導胰島素聚集的類伴護活性:在室溫下,突 變種 αA-F71R 水晶體蛋白對胰島素以不同莫耳數比之 伴護活性圖.....................................60 圖二十三、 DTT 誘導胰島素聚集的類伴護活性:在不同溫度下, 野生種αA-水晶體蛋白對胰島素莫耳數比 2:1 之伴護活 性圖...........................................61 圖二十四、 DTT 誘導胰島素聚集的類伴護活性:在不同溫度下, 突變種 αA-F71W 水晶體蛋白對胰島素莫耳數比 2:1 之伴護活性圖...................................62 圖二十五、 DTT 誘導胰島素聚集的類伴護活性:在不同溫度下, 突變種 αA-F71R 水晶體蛋白對胰島素莫耳數比 2:1 之 伴護活性圖.....................................63 表一、αA-野生種, F71W and F71R 在不同溫度下(25-65 oC), 測得遠紫外光圓二色光譜的二級結構元素含量.......64 第二部份 稻米芽鞘胰蛋白酶抑制劑之純化與鑑定............ 65 英文摘要.................................................66 中文摘要.................................................68 一、背景介紹............................................ 69 二、實驗材料與方法...................................... 72 (一) 材料............................................72 (二) 儀器設備 .......................................73 (三) 選用植物與生長條件..............................74 (四) 稻米芽鞘蛋白酶抑制因子之純化與特性分析..........75 (五) 15 kDa 蛋白酶抑制因子抑制反應分析................77 (六) 抗體製備........................................78 (七) 十二烷基硫酸鈉膠體電泳和西方墨點法..............78 (八) N 端氨基酸序列分析和液相層析串聯質譜儀...........80 (九) 25 kDa 蛋白及牛胰蛋白酶特性分析..................81 三、實驗結果............................................ 82 (一) 稻米芽鞘的生長..................................82 (二) BBTI 的純化、鑑定與抑制活性.....................83 (三) 多種生長條件下稻米芽鞘的測定....................85 (四) 結合牛胰蛋白酶以分析25 kDa 蛋白特性.............86 四、結果討論.............................................88 五、結論.................................................91 六、參考文獻.............................................92 圖表目錄................................................. 圖一、不同條件及時間點下,芽鞘的生長速率.............99 圖二、(A) 純化BBIrc1 之管柱層析圖: 使用Hiprep 16/20 CM FF 陽離子管柱..................................100 (B) 每一層析所收集片段的 SDS-PAGE 圖形.......100 圖三、(A) 純化BBIrc1 之管柱層析圖:使用 1.6 x 70 cm Sephadex G-50 superfine 管柱....................101 (B) 每一層析所收集片段的 SDS-PAGE 圖形.......101 圖四、BBIrc1 和 BBIrc2的一級胺基酸序列.............102 圖五、BBIrc1對胰蛋白酶之抑制圖譜....................103 圖六、BBIrc1 對胰蛋白酶抑制反應之反應速率 vs 基質濃度 圖.............................................104 圖七、不同 BBIrc1 濃度對胰蛋白酶抑制反應之反應速率 vs 基質濃度圖.....................................105 表一、BBIrc1[I] / Trypsine[E] / L-BAPNA[S]/吸收值A405nm.105 圖八、不同 BBIrc1 濃度對胰凝乳蛋白酶抑制反應之反應速率 vs 基質濃度圖..................................106 表二、BBIrc1[I]/Chymotrypsine[E]/BTEE[S]/吸收值A256nm.106 圖九、不同 BBIrc1 濃度對胰蛋白酶抑制反應之反應速率 vs 基質濃度之雙倒數圖.............................107 圖十、不同 BBIrc1 濃度對胰凝乳蛋白酶抑制反應之反應速率 vs 基質濃度之雙倒數圖..........................108 圖十一、BBIrc1對凝蛋白酶抑制反應之 Ki 值...........109 圖十二、BBIrc1對凝凝乳蛋白酶抑制反應之 Ki 值.......110 圖十三、(A) S-200 (1.6 cm x 200 cm)管柱層析分析圖.....111 (B) SDS-PAGE 分析圖......................111 (C) 西方墨點法方析圖......................111 圖十四、不同生長條件下,稻米芽鞘 BBIs 的西方墨點方 圖.............................................112 圖十五、BBIrc1 和 BBIrc2 的胺基酸相似度比較圖.....113 圖十六、BBIrc1 和 BBIrc2 對胰蛋白酶之 glutaraldehyde 誘導交又結合反應圖.............................114

    part 1:
    1. Fujii, N.; Hiroki, K.; Matsumoto, S.; Masuda, K.; Inoue, M.;Tanaka, Y.;
    Awakura, M.; and Akaboshi, M. (2001) “Correlation between the loss
    of the chaperone-like activity and the oxidation, isomerization and
    racemization of gamma-irradiated a-crystallin” Photochem. Photobiol.
    74, 477-482.
    2. Ito, H.; Kamei, K.; Iwamoto, I.; Inaguma, Y.; Nohara, D.; and Kato, K.
    (2001) “Phosphorylation-induced Change of the Oligomerization State
    of B-crystallinJ” Biol. Chem., 276, 5346- 5352.
    3. Gupta, R.; and Srivastava, O.-P. (2004) “Deamidation Affects
    Structural and Functional Properties of Human A-Crystallin and Its
    Oligomerization with B-Crystallin” J. Biol. Chem., 279,
    44258-44269.
    4. Derham, B.-K.; and Harding, J.-J. (1999) “α-Crystallin as a molecular
    chaperone” Prog. Retinal Eye Res., 18, 463-509.
    5. Cherian, M.; and Abraham, E.-C. (1995) “Human lens high molecular
    weight alpha-crystallin aggregates” Biochem. Biophys. Res. Commun.
    208, 675-679.
    6. Biswas, A.; Miller, A.; Oya-Ito.; Santhoshkumar, P.; Bhat, M.; and
    Nagarj, R.-H. (2006) “Effect of Site-Directed Mutagenesis of
    Methylglyoxal-Modifiable Arginine Residues on the Structure and
    Chaperone Function of Human &agr;A-Crystallin “ Biochemistry. 45,
    4569-4577.
    7. Reddy, G.-B.; Das, K.-P.; Petrash, J.-M.; and Surewicz, W.-K. (2000)
    “Temperature-dependent chaperone activity and structural properties of
    human alphaA- and alphaB-crystallins” J. Biol. Chem. 275, 4565-4570
    8. Das, K.-P.; and Surewicz, W.-K. FEBS Lett.1995, 369, 321-325.
    9. Saha, S.; and Das, K.-P. (2004) “Relationship between chaperone
    activity and oligomeric size of recombinant αA- and αB-crystallin: a
    tryptic digestion study” Proteins. 57, 610- 617.
    10. Raman, B.; Ramakrishna, T.; and Rao, C.-M. (1995) “Temperaturedependent
    chaperone- like activity of alpha-crystallin” FEBS Lett.
    365, 133-136.
    11. Sun, T.-X.; Das, B.-K.; and Liang, J.-N, (1997) “Conformation and
    functional difference between ... human lens aA- and aB-crystallinJ”
    Biol. Chem. 272, 6220–6225.
    12. Bloemendal, M.; and Bloemendal, H. (1998) “Hydrophobicity and
    flexibility of alpha A- and alpha B-crystallin are different” Int. J.
    Biol. Macromol. 22, 239–245.
    13. Bhattacharyya, J.; Srinivas, V.; and Sharma, K.-K. (2002)
    “Evaluation of hydrophobicity versus chaperonelike activity of
    bovine alphaA- and alphaB-crystallin.” J. Protein Chem. 21, 65- 71.
    14. Kumar, M.-S.; Kapoor, M.; Sinha, S.; and Reddy, G.-B. . (2005)
    “Insights into Hydrophobicity and the Chaperone-like Function of
    alpha A- and alpha B-crystallins: AN ISOTHERMAL TITRATION
    CALORIMETRIC STUDY” J. Biol. Chem. 280, 21726-21730
    15. Datta, S.-A.; and Rao, C.-M. (1999) “Differential Temperature
    dependent Chaperone-like Activity of A- and B-crystallin
    Homoaggregates” J. Biol. Chem. 274, 34773–34778
    16. van Boekel, M.-A.; de Lange, F.; de Grip, W.-J.; and de Jong, W.-W.
    (1999) “Eye lens αA- and αB-crystallin: complex stability versus
    chaperone-like activity” Biochim. Biophys. Acta. 1434, 114–123
    17. Sharma, K.-K.; Kaur, H.; Kumar, G.-S.; and Kester, K. (1998)
    “Interaction of 1,1'-Bi(4-anilino)naphthalene-5,5'-Disulfonic Acid
    with -Crystallin” J.Biol. Chem. 273, 8965–8970.
    18. Stevens, A.; and Augusteyn, R.-C. (1997) “Binding of 1-
    anilinonaphthalene-8-sulfonic acid to a-crystallin” Eur. J. Biochem.
    243, 792–797.
    19. Gomez-Puertas, P.; Martin-Benito, J.; Carrascosa, J.-L.; Willison,
    K.-R.; and Valpuesta, J.-M. (2004) “The substrate recognition
    mechanisms inchaperonins” J. Mol. Recognit. 17, 85–94.
    20. Brady, J.-P.; Garland, D.; Duglas-Tabor, Y.; Robison, W.-G.; Groome,
    A., and Wawrousek, E.-F. (1997) “Targeted disruption of the mouse
    αA-crystallin gene induces cataract and cytoplasmic inclusion bodies
    containing the small heat shock protein αB crystalline” Proc. Natl.
    Acad. Sci. U. S. A. 94, 884–889.
    21. Bhat, S.-P.; and Naginini, C.-N. (1989) “αB-subunit of lens specific
    proteinα-crystallin is present in other ocular and nonocular tissues”
    Biochem. Biophys. Res.Commun. 158, 319-325.
    22. Dubin, R.-A.; Wawrousek, E.-F.; and Piatigorsky, (1989) “Expression
    of the murine alpha B-crystallin gene is not restricted to the lens” J.
    Mol.Cell. Biol. 9, 1083-1091.
    23. Srinivasan, A.-N.; Naginini, C.-N.; and Bhat, S.-P. (1992) “alpha
    A-crystallin is expressed in non-ocular tissues” J.Biol.Chem. 267,
    23337-23341.
    24. Deretic, D.; Aebersold, R.-H.; Morrison, H.-D.; and Papenmaster,
    D.-S. (1994) “Alpha A- and alpha B-crystallin in the retina.
    Association with the post-Golgi compartment of frog retinal
    photoreceptors” J. Biol. Chem. 269, 16853-16861.
    25. Graw, J.; Loster, J.; Soewarto, D. et al. (2001) “Characterization of a
    New, Dominant V124E Mutation in the Mouse
    A-Crystallin–Encoding Gene” Invest Opthalmol Vis Sci. 42,
    2909-2915
    26. Litt, M.; Kramer, P.; LaMorticella, D.-M.; Murphy, W.; Lovrien,
    E.-W.; Weleber, R.-G. (1998) “Autosomal dominant congenital
    cataract associated with a missense mutation in the human alpha
    crystallin gene CRYAA” Hum Mol Genet. 7, 471-474.
    27. Mackay, D.-S.; Andley, U.-P.; Shiels, A. “Cell death triggered by a
    novel mutation in the alphaA-crystallin gene underlies autosomal
    dominant cataract linked to chromosome 21q” Eur J Hum Genet.
    2003, 11, 784-793.
    28. Chang, B.; Hawes, N.-L.; Smith, R.-S.; Heckenlively, J.-R.;
    Davisson, M.-T.; Roderick, T.-H. (1996) “Chromosomal localization
    of a new mouse lens opacity gene (lop18)” Genomics. 36,171-173
    29. Pras, E.; Frydman, M.; Levy-Nissenbaum et al.(2000) “A Nonsense
    Mutation (W9X) in CRYAA Causes Autosomal Recessive Cataract in
    an Inbred Jewish Persian Family” Invest Opthalmol Vis Sci. 41,
    3511-3515.
    30. Berry, V.; Francis, P.; Reddy, M.-A.; et al. (2001) “Alpha-B crystallin
    gene (CRYAB) mutation causes dominant congenital posterior polar
    cataract in humans” Am J Hum Genet. 69, 1141-1145.
    31. Xia, C-H.; Liu, B.; Chang, C.; Cheng, D.; Cheung, M. Wang, Q.,
    Haung, J., Horwitz., and Gong, X (2006) “Arginine 54 and Tyrosine
    118 Residues of alphaA-Crystallin Are Crucial for Lens Formation
    and Transparency” Invest Opthalmol Vis Sci. 47, 3004-3010.
    32. Kumar, L.-V.; Ramakrishna, T.; and Rao, C.-M. (1999) “Structural
    and Functional Consequences of the Mutation of a Conserved
    Arginine Residue in A and B Crystallins” J. Biol. Chem. 274,
    24137-24141.
    33. Cobb, B.-A., and Petrash, J.-M. Exp. Eye Res. 2000, 71(S1), S46
    (Abstract 149)
    34. Shroff, N.-P.; Cherian-Shaw, M.; Bera, S.; and Abraham, E.-C. (2000)
    “Mutation of R116C results in highly oligomerized alpha
    A-crystallin with modified structure and defective chaperone-like
    function” Biochemistry. 39, 1420-1426
    35. Cobb, B.-A.; and Petrash, J.-M. (2000) “Structural and functional
    changes in the aA crystallin R116C mutant in hereditary cataracts”
    Biochemistry. 39, 15791-15798.
    36. Bera, S.; Thampi, P.; Cho, W.-J., and Abraham, E.-C. (2002) “A
    Positive Charge Preservation at Position 116 of aA-Crystallin Is
    Critical for Its Structural and Functional Integrity” Biochemistry. 41,
    12421-12426.
    37. Smulders, R.-H.; Merck, K-B.; Aendekerk, J.; Horwitz, J.; Takemoto,
    L.; Slingsby, C.; Bloemendal, H, and de Jong, W.-W. (1995) “The
    Mutation Asp69→Ser Affects the Chaperone-Like Activity of
    αA-Crystallin” Eur. J. Biochem. 232, 834-838
    38. Santhoshkumar, P., and Sharma, K. K. (2001) “Phe71 Is Essential for
    Chaperone-like Function in A-crystallin” J. Biol. Chem. 276,
    47094–47099.
    39. Huang, F.-Y.; Ho, Y; Shaw, T.-S; Chuang, S.-A (2000) “Functional
    and Structural Studies of a-crystallin from Galactosemic Rats”
    Biochem. Biophys. Res.Commun 273, 197-202.
    40. Bradford, M.-M. (1976) “A rapid and sensitive method for the
    quantitation of microgram quantities of protein utilizing the principle
    of protein-dye binding” Anal Biochem. 72, 248-254.
    41. Saxena, V.-P.; Wetlaufer, D.-B. (1971) “A New Basis for Interpreting
    the Circular Dichroic Spectra of Proteins” Proc. Nat. Acad. Sci. USA.
    68, 969-972.
    42. Gupta, R.; and Srivastava, O.-P. (2004) “Deamidation Affects
    Structural and Functional Properties of Human A-Crystallin and
    Its Oligomerization with B-Crystallin” J. Biol. Chem. 279,
    44258-44269.
    43. Liang, J., and Chakrabarti, B. (1982) “Spectroscopic investigations of
    bovine lens crystallins. Circular dichroism and intrinsic fluorescence”
    Biochemistry, 21, 1847-1852
    44. Sharma, K.-K.; Kumar, R.-S.; Kumar, G.-S.; and Quinn, P.-T. (2000)
    “Synthesis and Characterization of a Peptide Identified as a
    Functional Element in A-crystallin” J. Biol. Chem. 275,
    3767–3771.
    45. Chou, P.-Y.; Fasman, G.-D. (1978) “Empirical predictions of protein
    conformation” Annu. Rev. Biochem. 47, 251-276
    part 2:
    1. Mayer, A.-M.; Shain, Y. (1974) “Control of seed germination” Ann.
    Rev. Plant Physiol. 25, 167-193.
    2. Ryan, C.-A.; (1973) “Proteolytic enzymes and their inhibitors in
    plants” Ann. Rev. Plant Physiol. 24, 173-196.
    3. Rahbe, Y.; Ferrasson E, Rabesona H and Quillien L (2003) “Toxicity
    to the pea aphid Acyrthosiphon pisum of antichymotrypsin isoforms
    and fragments of Bowman-Birk protease inhibitors from pea seeds.”
    Insect Biochem. Mol. Biol. 33, 299-306.
    4. Qu, L.-J.; Chen, J.; Liu, M.; Pan, N.; Okamoto, H.; Lin, Z.; Li, C.; Li,
    D.; Wang, J.; Zhu, G.; Zhao, X.; Chen, X.; Gu, H.; Chen, Z.; (2003)
    “Molecular cloning and functional analysis of a novel type of
    Bowman-Birk inhibitor gene family in rice.” Plant Physiol. 133,
    560-570.
    5. Ryan, C.-A. (1981) “Proteinase inhibitors. In: Marcus A.” The
    Biochemistry of Plants, Academic press, New York., 6, 351-370.
    6. Qi, R.-F.; Song, Z-W.; Chi, C.-W. (2005) “Structural Features and
    Molecular Evolution of Bowman-Birk Protease Inhibitors and their
    Potential Application” Acta Biochim. Biophys. Sinica. 37(5),283-292.
    7. Tashiro, M.; Hashino, K.; Shiozaki, M.; Ibuki, F.;Maki, Z. (1987) “The
    Complete Amino Acid Sequence of Rice Bran Trypsin Inhibitor.” J.
    Biochem. 102, 297-306.
    8. Birk Y (1987) “Proteinase inhibitors.” In A Neuroberger, K
    Brocklehurst, eds, Hydrolytic Enzymes. Elsevier Science Publishers,
    Amsterdam, pp 257-300.
    9. Birk Y (1993 ) “Protease inhibitors of plant origin and role of protease
    inhibitors in human nutrition.” In W Troll, AR Kennedy, eds, Protease
    Inhibitors as Cancer Chemopreventive Agents. Plenum Press, New
    York, pp 97-106.
    10. Kennedy AR (1993) “Anticarcinogenic activity of protease
    inhibitors.” In W Troll, AR Kennedy, eds, Protease Inhibitors as
    Cancer Chemopreventive Agents: Plenum Press, New York, pp
    9-64.
    11. Nagasue A, Fukamachi H, Ikenaga H, Funatsu G (1988) “The amino
    acid sequence of barley rootlet trypsin inhibitor.” Agric Biol Chem
    52: 1505-1514.
    12. Tashiro M, Asao T, Hirata C, Takahashi K, Kanamoru M (1990) “The
    complete amino acid sequence of a major trypsin inhibitor from seeds
    of foxtail millet (Setaria italica).” J. Biochem 108: 669-672
    13. Prakash B, Selvaraj S, Murthy MRN, Sreerama YN, Rao DR, Gowda
    LR (1996) “Analysis of the amino acid sequences of plant
    Bowman-Birk inhibitors.” J Mol Evol 42: 560-569
    14. Vierstra, R. D. (1993) “Protein degradation in plant.” Annu. Rev.
    Plant Physiol. Plant Mol. Biol., 44: 385-410.
    15. Lee TM, YH Lin. (1995) “Trypsin inhibitor and trypsin-like protease
    activity in air- or submergence-grown rice (Oryza sativa L.)
    coleoptiles.” Plant Science 106: 43-54.
    16. Jones, B.-L.; (2001) “Interactions of malt and barley (Hordeum
    vulgare L.) endoproteinases with their endogenous inhibitors” J.
    Agric. Food Chem. 49, 5975-5981.
    17. Jones, B. L., and Fontanini, D. (2003) “Trypsin/α-amylase inhibitors
    inactivate endogenous barley/malt serine endoproteinases.” J. Agric.
    Food Chem. 51:5803-5814.
    18. Rakwal, R.; Kumar Agrawal, G.; Jwa, N.-S. (2001) “Characterization
    of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly
    light regulated induction in response to cut, jasmonic acid, ethylene
    and protein phosphatase 2A inhibitors.” Gene. 263, 189-198(10).
    19. Creelman, R.-A.; Mullet, J.-E.; (1997) “Oligosaccharins,
    Brassinolides, and Jasmonates: Nontraditional Regulators of Plant
    Growth, Development, and Gene Expression” Plant. Cell., 9,
    1211-1223.
    20. Parthier, B. (1991) “Jasmonates, new regulators of plant growth and
    development: many facts and few hypotheses on their actions.” Bot.
    Acta. 104:446-454
    21. Creelman, R.A., and Mullet, J.E. (1997) “Biosynthesis And Action Of
    Jasmonates In Plants.” Annu Rev Plant Physiol Plant Mol Biol 48,
    355-381.
    22. Rakawal, R.; Komatsu, S. (2000) “Role of jasmonate in the rice
    (Oryza sativa L.) self-defense mechanism using proteome analysis.”
    Electrophoresis. 21, 2492-2500.
    23. Shen, S., Jing, Y., and Kuang, T. (2003) “Proteomics approach to
    identify wound-response related proteins from rice leaf sheath.”
    Proteomics 3: 527-535..
    24. Ishizawa, K. and Y. Esashi (1984) “Gaseous factors involved in the
    enhanced elongation of rice coleoptiles under water.” Plant, Cell
    Environ. 7: 239-24.
    25. Das, A. and Uchimiya, H. (2002) “Oxygen stress and adaptation of a
    semi-aquatic plant : rice (Oryza sativa).” J. Plant Res. 115 :
    315-320..
    26. Huang S, Greenway H, Colmer TD, Millar AH (2005) “Protein
    synthesis by rice coleoptiles during prolonged anoxia: Implications
    for glycolysis, growth and energy utilization.” Annals of Botany 96:
    703-715.
    27. Thongbai, P.; Goodman, B.-A. (2000) “Oxidative free radicals
    generation and post-anoxic injury of rices (Oryza Sativa L.) in an
    iron-toxic soil.” J. Plant. Nutr. 23, 1887-1900.
    28. Ella, E.S.; Kawano, N. and Ito, O. (2003) “Importance of active
    oxygen-scavenging system in the recovery of rice seedlings after
    submergence.” Plant Sci. 165, 85-93.
    29. Santosa, I.-E.; Ram,P.-C.; Boamafa, E.-I., Laarhoven,L.J.-J.; Reuss,J.;
    Jackson, M.-B. and Harren, F.J.-M. (2007) “Patterns of peroxidative
    ethane emission from submerged rice seedlings indicate that damage
    from reactive oxygen species takes place during submergence and is
    not necessarily a post-anoxic phenomenon.” Planta. 226,193-202.
    30. Chang, T., Kuo, M.-C., Khoo, K.-H., Inoue, S. and Inoue, Y. (2000)
    “Developmentally regulated expression of a peptide:N-glycanase
    during germination of rice seeds (Oryza sativa) and its purification
    and characterization.” J. Biol. Chem. 275, 129-134.
    31. Nelson, D.L.; Cox, M.M. (2005) Lehninger, Principles of
    Biochemistry, IVth edition. W.H. Freeman and Comp. New York,
    USA 209-212.
    32. Chang, T.; Tsay, I.-H.; Chang, W.-C. (1987) “Electroelution of DNA
    and Protein from Polyacrylamide and Agarose Gels.” Biochem. Int.
    15, 687-691.
    33. Tsay, Y.-G..; Wang, Y.-H.; Chiu,C.-M.; Shen, B.-J.; Lee, S.-C. (2000)
    “A strategy for identification and quantitation of phosphopeptides by
    liquid chromatography/tandem mass spectrometry.” Anal. Biochem.
    287, 55-64.
    34. Eng, J.-K.; McCormick, A.-L.; Yates, J.-R. (1994) “An approach to
    correlate tandem mass spectral data of peptides with amino acid
    sequences in a protein database.” J. Am. Soc. Mass Spectrum. 5,
    976-989.
    35. Inada, N.; Sakai, A.; Kuroiwa, H.; Kuroiwa, T. (1998)
    “Three-dimensional analysis of the senescence program in rice (Oryza
    sativa L.) coleoptiles: Investigations of tissues and cells by
    fluorescence microscopy.” Planta, 205, 153-164.
    36. Kawai, M.; Uchimiya, H. (2000) “Coleoptile senescence in rice
    (Oryza sativa L.)” Ann. Bo t -London. 86, 405-414.
    37. Lin,Y.-H.; Li,H.-T.; Huang,Y.-C.; Hsieh,Y.-C.; Guan,H.-H.; Liu,M.-Y.;
    Chang,T.-I.;Wang,H.-J.; Chen, C.-J. (2006) “Purification,
    crystallization and preliminary Xray crystallographic analysis of rice
    Bowman-Birk inhibitor from Oryza sativa.” Acta Acta. Cryst. F62,
    522-524.
    38. Yano,H.; Kuroda, M. (2006) “Disulfide proteome yields a detailed
    understanding of redox regulations: a model study of
    thioredoxin-linked reactions in seed germination.” Proteomics. 6,
    294-300.
    39. Zeller, T.; Klung, G. (2000) “Thioredoxins in bacteria: functions in
    oxidative stress response and regulation of thioredoxin genes.”
    Naturwissenschaften. 93, 259-266.
    40. Kobrehel, K.; Yee, B.-C.; Buchanan, B.-B. (1991) “Role of the
    NADP/thioredoxin system in the reduction of alpha-amylase and
    trypsin inhibitor proteins.” J. Biol. Chem. 266, 16135-16140.
    41. Garcia-Olmedo, F.; Salcedo, G..; Sanchez-Monge, R.; Gomez, L.;
    Royo, J.; Carbonero, P. (1987) “Plant proteinaceous inhibitors of
    proteinases and α-amylases.” Oxford Surveys of Plant Molecular
    and Cell Biology., 4, 275-335.
    42. Birk Y. (1976) “Proteinase inhibitors from plant sources. “ Methods
    in enzymology. 45 B, 695-739.
    43. Laskowski, M. Jr.; Kato, I. (1980) Protein inhibitors of proteinases.
    Annu. Rev. Biochem. 49, 593-626.
    44. Trumper, S.; Follmann, H.; Haberlein, I.(1994) “A novel
    dehydroascorbate reductase from spinach chloroplasts homologous to
    plant trypsin inhibitor.” FEBS., 352, 159-162.
    45. Ryan,C.-A.; Green, T.-R. (1974) ”Proteinase inhibitors in natural
    plant protection.”Recent Adv. Phytochem. 8, 123-140

    下載圖示 校內:立即公開
    校外:2009-09-07公開
    QR CODE