| 研究生: |
顏克明 Yan, Ker-ming |
|---|---|
| 論文名稱: |
利用定點突變研究大白鼠眼球αA-水晶體蛋白之結構與活性及稻米芽鞘胰蛋白酶抑制劑之純化與鑑定 Structure-Activity Study of Rat Lens αA-Crystallins using Site-Directed Mutagenesis and Purification and Characterization of Protease Inhibitors from Rice Coleoptiles |
| 指導教授: |
黃福永
Huang, Fu-Yung 王小萍 Wang, Shao-Pin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | αA-水晶體蛋白 、稻米芽鞘 、定點突變 、伴護活性 、非競爭性的抑制 、競爭性的抑制 、Bowman-Birk 蛋白酶抑制劑 |
| 外文關鍵詞: | Non-competitive inhibition, Competitive inhibition, Bowman-Birk protease inhibitor, Site-directed mutagenesis, αA-crystallin, Chaperone activity, Rice coleoptiles |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Part 1: 為了探討疏水性或電荷在αA-水晶體蛋白第71位置上對分子伴護的效應,我們比較分析αA-水晶體蛋白野生種和在N-端帶有的額外11個殘基包含六個組氨酸(His)標示的兩個穾變種F71W 和 F71R蛋白質的活性。在誘導胰島素聚集的實驗中顯示,這額外11個殘基對類伴護活性影響很小。 F71W突變種的活性和野生種蛋白相似;而F71R的活性卻明顯的降低。 F71W及野生種之活性隨莫耳數之增加而增加,然而 F71R 之活性卻隨著莫耳數之增加而急速減少。ANS 發射螢光的測量顯示 F71R 有最高的表面疏水性,推測可能是在這個位置上的正電荷造成立體組態的改變而使疏水性增加。熱穩定性實驗亦觀察到因疏水性的增加,而導致高分子量聚集的形成 (>2000 KDa)。 在熱穩定性的研究顯示F71W 比F71R及野生種較具熱穩定性。在不同溫度對類伴護活性的實驗研究中顯示,單體及寡聚合體 (650 kDa) 是造成伴護官能的主要因素,而表面疏水性並不是伴護活性存在的必要條件。近紫外光圓二色光譜的實驗研究顯示 β-摺板型結構(β-sheet) 是所有三個水晶體蛋白二級結構的主要成份及 F71R 具有高百分比的任意型結構(random coil)。
part 2: 從快速生長的芽鞘中,有一分子量為15 kDa 的Bowman-Birk 蛋白酶抑制劑(BBIrc)已經被純化,且利用部分N 端序列定
序、液相層析-質譜儀(LC-MS)和基質輔助雷射脫附游離飛行時間質譜儀(MALDI-TOF MS),已鑑定出其為一133 胺基酸多肽鏈(BBIrc1)。酵素動力學研究指出,此蛋白酶抑制劑對胰蛋白酶表現出競爭性的抑制,其解離常數為4.0 x 10-7M,而對α-胰凝乳蛋白酶表現為非競爭性的抑制,其解離常數為9.3 x 10-7 M。西方墨點法的結果顯示,由15 kDa 蛋白製備而成的抗血清,會分別辨識15 kDa 和另一25 kDa 的蛋白質。在有氧和低氧條件下15 kDa 蛋白的表現量幾乎維持恆定;然而,當快速伸長的芽鞘由低氧移至有氧環境時,25 kDa蛋白的表現會隨時間之增加而提升,這結果顯示稻米芽鞘BBI 蛋白的表現模式與發育過程中的形態變化有關。25 kDa
蛋白前9 個氨基酸的部分N 端序列為AEAPPRPPK 和 RBBI3-1 的第37 至45 序列相同,且在液相層析串聯質譜研究亦發現有分子量的片段符合於RBBI3-1。此25 kDa 蛋白也與牛之胰蛋白酶(Bovine trypsine)有專一性結合,這蛋白質之表現模式首次發現:「氧氣」能選擇性地增加特定BBI 基因表現,本研究結果表示稻米芽鞘中BBI 蛋白質可能扮演著多重生物性功能。
Part 1: In order to explore whether hydrophobicity or charge at 71th residue is important for chaperone-like activity, wild type (wt) and two mutant αA-crystallins, F71W and F71R, with extra 11 residues including 6 histidines tagged at the N-terminal were prepared. Chaperone-like activity toward dithiotreitol (DTT) induced insulin aggregation showed the 11 extra residues had little effect. The activity for F71W was as active as the wild type; while F71R was much less active. For wild type and F71W, the activity increased with the increase of molar quantity; surprisingly, for F71R it caused a drastic decline. ANS fluorescence measurements showed F71R had the highest surface hydrophobicity, suggesting positive charge at this site caused the conformational alteration leading to the increase of hydrophobicity and this hydrophobicity resulted in the formation of high molecular weight aggregates (>2000 kDa) observed from the thermal stability study. Thermal stability study revealed F71W was the most thermally stable crystallin. Chaperone-like activity studies at various temperature suggested the monomer and oligomer, 650 kDa, were responsible for chaperone function and surface hydrophobicity was not the prerequisite for activity. Near-UV CD studies showed β-sheet was the major secondary structure for all three crystallins and F71R had higher percentage of random coil.
part 2: A 15 kDa rice Bowman-Birk inhibitor from fast elongating coleoptiles has been purified and identified using partial N-terminal sequence, LC-MS, and MALDI-TOF MS as a 133 amino acid polypeptide (BBIrc1). The kinetic study shows this protease inhibitor displays competitive inhibition toward trypsin with Ki of 4.0 x 10-7 M and non-competitive inhibition toward α-chymotrypsin with Ki of 9.3 x 10-6 M. The Western blotting results of the anti-sera raised against this 15 kDa protein showed that this anti-serum recognized two BBI proteins with molecular size around 15 kDa (BBIrc1) and 25 kDa (BBIrc2) and the quantity of the expression of 15 kDa was nearly constant under both aerobic and hypoxia conditions; however, the 25 kDa expression was greatly up-regulated when the fast elongating coleoptiles were transferred from hypoxia conditions to the aerobic conditions. The results indicate that the expression pattern of BBIs proteins correlated to the developmental stage in terms of morphological changes. The partial N-terminal sequence of the first 9 amino acids of 25 kDa was AEAPPRPPK, which has the same amino acid sequence of 37th to 45th of RBBI3-1 and LC-MS study shows that several mass fragments fit to RBBI3-1. The 25 kDa protein also shows specific binding to bovine trypsin.
This expression pattern demonstrates for the first time that environmental factor, oxygen, can select and enhance specific BBI gene expression. The results of this study suggest BBI proteins might play multiple biological functions inside rice coleoptiles.
part 1:
1. Fujii, N.; Hiroki, K.; Matsumoto, S.; Masuda, K.; Inoue, M.;Tanaka, Y.;
Awakura, M.; and Akaboshi, M. (2001) “Correlation between the loss
of the chaperone-like activity and the oxidation, isomerization and
racemization of gamma-irradiated a-crystallin” Photochem. Photobiol.
74, 477-482.
2. Ito, H.; Kamei, K.; Iwamoto, I.; Inaguma, Y.; Nohara, D.; and Kato, K.
(2001) “Phosphorylation-induced Change of the Oligomerization State
of B-crystallinJ” Biol. Chem., 276, 5346- 5352.
3. Gupta, R.; and Srivastava, O.-P. (2004) “Deamidation Affects
Structural and Functional Properties of Human A-Crystallin and Its
Oligomerization with B-Crystallin” J. Biol. Chem., 279,
44258-44269.
4. Derham, B.-K.; and Harding, J.-J. (1999) “α-Crystallin as a molecular
chaperone” Prog. Retinal Eye Res., 18, 463-509.
5. Cherian, M.; and Abraham, E.-C. (1995) “Human lens high molecular
weight alpha-crystallin aggregates” Biochem. Biophys. Res. Commun.
208, 675-679.
6. Biswas, A.; Miller, A.; Oya-Ito.; Santhoshkumar, P.; Bhat, M.; and
Nagarj, R.-H. (2006) “Effect of Site-Directed Mutagenesis of
Methylglyoxal-Modifiable Arginine Residues on the Structure and
Chaperone Function of Human &agr;A-Crystallin “ Biochemistry. 45,
4569-4577.
7. Reddy, G.-B.; Das, K.-P.; Petrash, J.-M.; and Surewicz, W.-K. (2000)
“Temperature-dependent chaperone activity and structural properties of
human alphaA- and alphaB-crystallins” J. Biol. Chem. 275, 4565-4570
8. Das, K.-P.; and Surewicz, W.-K. FEBS Lett.1995, 369, 321-325.
9. Saha, S.; and Das, K.-P. (2004) “Relationship between chaperone
activity and oligomeric size of recombinant αA- and αB-crystallin: a
tryptic digestion study” Proteins. 57, 610- 617.
10. Raman, B.; Ramakrishna, T.; and Rao, C.-M. (1995) “Temperaturedependent
chaperone- like activity of alpha-crystallin” FEBS Lett.
365, 133-136.
11. Sun, T.-X.; Das, B.-K.; and Liang, J.-N, (1997) “Conformation and
functional difference between ... human lens aA- and aB-crystallinJ”
Biol. Chem. 272, 6220–6225.
12. Bloemendal, M.; and Bloemendal, H. (1998) “Hydrophobicity and
flexibility of alpha A- and alpha B-crystallin are different” Int. J.
Biol. Macromol. 22, 239–245.
13. Bhattacharyya, J.; Srinivas, V.; and Sharma, K.-K. (2002)
“Evaluation of hydrophobicity versus chaperonelike activity of
bovine alphaA- and alphaB-crystallin.” J. Protein Chem. 21, 65- 71.
14. Kumar, M.-S.; Kapoor, M.; Sinha, S.; and Reddy, G.-B. . (2005)
“Insights into Hydrophobicity and the Chaperone-like Function of
alpha A- and alpha B-crystallins: AN ISOTHERMAL TITRATION
CALORIMETRIC STUDY” J. Biol. Chem. 280, 21726-21730
15. Datta, S.-A.; and Rao, C.-M. (1999) “Differential Temperature
dependent Chaperone-like Activity of A- and B-crystallin
Homoaggregates” J. Biol. Chem. 274, 34773–34778
16. van Boekel, M.-A.; de Lange, F.; de Grip, W.-J.; and de Jong, W.-W.
(1999) “Eye lens αA- and αB-crystallin: complex stability versus
chaperone-like activity” Biochim. Biophys. Acta. 1434, 114–123
17. Sharma, K.-K.; Kaur, H.; Kumar, G.-S.; and Kester, K. (1998)
“Interaction of 1,1'-Bi(4-anilino)naphthalene-5,5'-Disulfonic Acid
with -Crystallin” J.Biol. Chem. 273, 8965–8970.
18. Stevens, A.; and Augusteyn, R.-C. (1997) “Binding of 1-
anilinonaphthalene-8-sulfonic acid to a-crystallin” Eur. J. Biochem.
243, 792–797.
19. Gomez-Puertas, P.; Martin-Benito, J.; Carrascosa, J.-L.; Willison,
K.-R.; and Valpuesta, J.-M. (2004) “The substrate recognition
mechanisms inchaperonins” J. Mol. Recognit. 17, 85–94.
20. Brady, J.-P.; Garland, D.; Duglas-Tabor, Y.; Robison, W.-G.; Groome,
A., and Wawrousek, E.-F. (1997) “Targeted disruption of the mouse
αA-crystallin gene induces cataract and cytoplasmic inclusion bodies
containing the small heat shock protein αB crystalline” Proc. Natl.
Acad. Sci. U. S. A. 94, 884–889.
21. Bhat, S.-P.; and Naginini, C.-N. (1989) “αB-subunit of lens specific
proteinα-crystallin is present in other ocular and nonocular tissues”
Biochem. Biophys. Res.Commun. 158, 319-325.
22. Dubin, R.-A.; Wawrousek, E.-F.; and Piatigorsky, (1989) “Expression
of the murine alpha B-crystallin gene is not restricted to the lens” J.
Mol.Cell. Biol. 9, 1083-1091.
23. Srinivasan, A.-N.; Naginini, C.-N.; and Bhat, S.-P. (1992) “alpha
A-crystallin is expressed in non-ocular tissues” J.Biol.Chem. 267,
23337-23341.
24. Deretic, D.; Aebersold, R.-H.; Morrison, H.-D.; and Papenmaster,
D.-S. (1994) “Alpha A- and alpha B-crystallin in the retina.
Association with the post-Golgi compartment of frog retinal
photoreceptors” J. Biol. Chem. 269, 16853-16861.
25. Graw, J.; Loster, J.; Soewarto, D. et al. (2001) “Characterization of a
New, Dominant V124E Mutation in the Mouse
A-Crystallin–Encoding Gene” Invest Opthalmol Vis Sci. 42,
2909-2915
26. Litt, M.; Kramer, P.; LaMorticella, D.-M.; Murphy, W.; Lovrien,
E.-W.; Weleber, R.-G. (1998) “Autosomal dominant congenital
cataract associated with a missense mutation in the human alpha
crystallin gene CRYAA” Hum Mol Genet. 7, 471-474.
27. Mackay, D.-S.; Andley, U.-P.; Shiels, A. “Cell death triggered by a
novel mutation in the alphaA-crystallin gene underlies autosomal
dominant cataract linked to chromosome 21q” Eur J Hum Genet.
2003, 11, 784-793.
28. Chang, B.; Hawes, N.-L.; Smith, R.-S.; Heckenlively, J.-R.;
Davisson, M.-T.; Roderick, T.-H. (1996) “Chromosomal localization
of a new mouse lens opacity gene (lop18)” Genomics. 36,171-173
29. Pras, E.; Frydman, M.; Levy-Nissenbaum et al.(2000) “A Nonsense
Mutation (W9X) in CRYAA Causes Autosomal Recessive Cataract in
an Inbred Jewish Persian Family” Invest Opthalmol Vis Sci. 41,
3511-3515.
30. Berry, V.; Francis, P.; Reddy, M.-A.; et al. (2001) “Alpha-B crystallin
gene (CRYAB) mutation causes dominant congenital posterior polar
cataract in humans” Am J Hum Genet. 69, 1141-1145.
31. Xia, C-H.; Liu, B.; Chang, C.; Cheng, D.; Cheung, M. Wang, Q.,
Haung, J., Horwitz., and Gong, X (2006) “Arginine 54 and Tyrosine
118 Residues of alphaA-Crystallin Are Crucial for Lens Formation
and Transparency” Invest Opthalmol Vis Sci. 47, 3004-3010.
32. Kumar, L.-V.; Ramakrishna, T.; and Rao, C.-M. (1999) “Structural
and Functional Consequences of the Mutation of a Conserved
Arginine Residue in A and B Crystallins” J. Biol. Chem. 274,
24137-24141.
33. Cobb, B.-A., and Petrash, J.-M. Exp. Eye Res. 2000, 71(S1), S46
(Abstract 149)
34. Shroff, N.-P.; Cherian-Shaw, M.; Bera, S.; and Abraham, E.-C. (2000)
“Mutation of R116C results in highly oligomerized alpha
A-crystallin with modified structure and defective chaperone-like
function” Biochemistry. 39, 1420-1426
35. Cobb, B.-A.; and Petrash, J.-M. (2000) “Structural and functional
changes in the aA crystallin R116C mutant in hereditary cataracts”
Biochemistry. 39, 15791-15798.
36. Bera, S.; Thampi, P.; Cho, W.-J., and Abraham, E.-C. (2002) “A
Positive Charge Preservation at Position 116 of aA-Crystallin Is
Critical for Its Structural and Functional Integrity” Biochemistry. 41,
12421-12426.
37. Smulders, R.-H.; Merck, K-B.; Aendekerk, J.; Horwitz, J.; Takemoto,
L.; Slingsby, C.; Bloemendal, H, and de Jong, W.-W. (1995) “The
Mutation Asp69→Ser Affects the Chaperone-Like Activity of
αA-Crystallin” Eur. J. Biochem. 232, 834-838
38. Santhoshkumar, P., and Sharma, K. K. (2001) “Phe71 Is Essential for
Chaperone-like Function in A-crystallin” J. Biol. Chem. 276,
47094–47099.
39. Huang, F.-Y.; Ho, Y; Shaw, T.-S; Chuang, S.-A (2000) “Functional
and Structural Studies of a-crystallin from Galactosemic Rats”
Biochem. Biophys. Res.Commun 273, 197-202.
40. Bradford, M.-M. (1976) “A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the principle
of protein-dye binding” Anal Biochem. 72, 248-254.
41. Saxena, V.-P.; Wetlaufer, D.-B. (1971) “A New Basis for Interpreting
the Circular Dichroic Spectra of Proteins” Proc. Nat. Acad. Sci. USA.
68, 969-972.
42. Gupta, R.; and Srivastava, O.-P. (2004) “Deamidation Affects
Structural and Functional Properties of Human A-Crystallin and
Its Oligomerization with B-Crystallin” J. Biol. Chem. 279,
44258-44269.
43. Liang, J., and Chakrabarti, B. (1982) “Spectroscopic investigations of
bovine lens crystallins. Circular dichroism and intrinsic fluorescence”
Biochemistry, 21, 1847-1852
44. Sharma, K.-K.; Kumar, R.-S.; Kumar, G.-S.; and Quinn, P.-T. (2000)
“Synthesis and Characterization of a Peptide Identified as a
Functional Element in A-crystallin” J. Biol. Chem. 275,
3767–3771.
45. Chou, P.-Y.; Fasman, G.-D. (1978) “Empirical predictions of protein
conformation” Annu. Rev. Biochem. 47, 251-276
part 2:
1. Mayer, A.-M.; Shain, Y. (1974) “Control of seed germination” Ann.
Rev. Plant Physiol. 25, 167-193.
2. Ryan, C.-A.; (1973) “Proteolytic enzymes and their inhibitors in
plants” Ann. Rev. Plant Physiol. 24, 173-196.
3. Rahbe, Y.; Ferrasson E, Rabesona H and Quillien L (2003) “Toxicity
to the pea aphid Acyrthosiphon pisum of antichymotrypsin isoforms
and fragments of Bowman-Birk protease inhibitors from pea seeds.”
Insect Biochem. Mol. Biol. 33, 299-306.
4. Qu, L.-J.; Chen, J.; Liu, M.; Pan, N.; Okamoto, H.; Lin, Z.; Li, C.; Li,
D.; Wang, J.; Zhu, G.; Zhao, X.; Chen, X.; Gu, H.; Chen, Z.; (2003)
“Molecular cloning and functional analysis of a novel type of
Bowman-Birk inhibitor gene family in rice.” Plant Physiol. 133,
560-570.
5. Ryan, C.-A. (1981) “Proteinase inhibitors. In: Marcus A.” The
Biochemistry of Plants, Academic press, New York., 6, 351-370.
6. Qi, R.-F.; Song, Z-W.; Chi, C.-W. (2005) “Structural Features and
Molecular Evolution of Bowman-Birk Protease Inhibitors and their
Potential Application” Acta Biochim. Biophys. Sinica. 37(5),283-292.
7. Tashiro, M.; Hashino, K.; Shiozaki, M.; Ibuki, F.;Maki, Z. (1987) “The
Complete Amino Acid Sequence of Rice Bran Trypsin Inhibitor.” J.
Biochem. 102, 297-306.
8. Birk Y (1987) “Proteinase inhibitors.” In A Neuroberger, K
Brocklehurst, eds, Hydrolytic Enzymes. Elsevier Science Publishers,
Amsterdam, pp 257-300.
9. Birk Y (1993 ) “Protease inhibitors of plant origin and role of protease
inhibitors in human nutrition.” In W Troll, AR Kennedy, eds, Protease
Inhibitors as Cancer Chemopreventive Agents. Plenum Press, New
York, pp 97-106.
10. Kennedy AR (1993) “Anticarcinogenic activity of protease
inhibitors.” In W Troll, AR Kennedy, eds, Protease Inhibitors as
Cancer Chemopreventive Agents: Plenum Press, New York, pp
9-64.
11. Nagasue A, Fukamachi H, Ikenaga H, Funatsu G (1988) “The amino
acid sequence of barley rootlet trypsin inhibitor.” Agric Biol Chem
52: 1505-1514.
12. Tashiro M, Asao T, Hirata C, Takahashi K, Kanamoru M (1990) “The
complete amino acid sequence of a major trypsin inhibitor from seeds
of foxtail millet (Setaria italica).” J. Biochem 108: 669-672
13. Prakash B, Selvaraj S, Murthy MRN, Sreerama YN, Rao DR, Gowda
LR (1996) “Analysis of the amino acid sequences of plant
Bowman-Birk inhibitors.” J Mol Evol 42: 560-569
14. Vierstra, R. D. (1993) “Protein degradation in plant.” Annu. Rev.
Plant Physiol. Plant Mol. Biol., 44: 385-410.
15. Lee TM, YH Lin. (1995) “Trypsin inhibitor and trypsin-like protease
activity in air- or submergence-grown rice (Oryza sativa L.)
coleoptiles.” Plant Science 106: 43-54.
16. Jones, B.-L.; (2001) “Interactions of malt and barley (Hordeum
vulgare L.) endoproteinases with their endogenous inhibitors” J.
Agric. Food Chem. 49, 5975-5981.
17. Jones, B. L., and Fontanini, D. (2003) “Trypsin/α-amylase inhibitors
inactivate endogenous barley/malt serine endoproteinases.” J. Agric.
Food Chem. 51:5803-5814.
18. Rakwal, R.; Kumar Agrawal, G.; Jwa, N.-S. (2001) “Characterization
of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly
light regulated induction in response to cut, jasmonic acid, ethylene
and protein phosphatase 2A inhibitors.” Gene. 263, 189-198(10).
19. Creelman, R.-A.; Mullet, J.-E.; (1997) “Oligosaccharins,
Brassinolides, and Jasmonates: Nontraditional Regulators of Plant
Growth, Development, and Gene Expression” Plant. Cell., 9,
1211-1223.
20. Parthier, B. (1991) “Jasmonates, new regulators of plant growth and
development: many facts and few hypotheses on their actions.” Bot.
Acta. 104:446-454
21. Creelman, R.A., and Mullet, J.E. (1997) “Biosynthesis And Action Of
Jasmonates In Plants.” Annu Rev Plant Physiol Plant Mol Biol 48,
355-381.
22. Rakawal, R.; Komatsu, S. (2000) “Role of jasmonate in the rice
(Oryza sativa L.) self-defense mechanism using proteome analysis.”
Electrophoresis. 21, 2492-2500.
23. Shen, S., Jing, Y., and Kuang, T. (2003) “Proteomics approach to
identify wound-response related proteins from rice leaf sheath.”
Proteomics 3: 527-535..
24. Ishizawa, K. and Y. Esashi (1984) “Gaseous factors involved in the
enhanced elongation of rice coleoptiles under water.” Plant, Cell
Environ. 7: 239-24.
25. Das, A. and Uchimiya, H. (2002) “Oxygen stress and adaptation of a
semi-aquatic plant : rice (Oryza sativa).” J. Plant Res. 115 :
315-320..
26. Huang S, Greenway H, Colmer TD, Millar AH (2005) “Protein
synthesis by rice coleoptiles during prolonged anoxia: Implications
for glycolysis, growth and energy utilization.” Annals of Botany 96:
703-715.
27. Thongbai, P.; Goodman, B.-A. (2000) “Oxidative free radicals
generation and post-anoxic injury of rices (Oryza Sativa L.) in an
iron-toxic soil.” J. Plant. Nutr. 23, 1887-1900.
28. Ella, E.S.; Kawano, N. and Ito, O. (2003) “Importance of active
oxygen-scavenging system in the recovery of rice seedlings after
submergence.” Plant Sci. 165, 85-93.
29. Santosa, I.-E.; Ram,P.-C.; Boamafa, E.-I., Laarhoven,L.J.-J.; Reuss,J.;
Jackson, M.-B. and Harren, F.J.-M. (2007) “Patterns of peroxidative
ethane emission from submerged rice seedlings indicate that damage
from reactive oxygen species takes place during submergence and is
not necessarily a post-anoxic phenomenon.” Planta. 226,193-202.
30. Chang, T., Kuo, M.-C., Khoo, K.-H., Inoue, S. and Inoue, Y. (2000)
“Developmentally regulated expression of a peptide:N-glycanase
during germination of rice seeds (Oryza sativa) and its purification
and characterization.” J. Biol. Chem. 275, 129-134.
31. Nelson, D.L.; Cox, M.M. (2005) Lehninger, Principles of
Biochemistry, IVth edition. W.H. Freeman and Comp. New York,
USA 209-212.
32. Chang, T.; Tsay, I.-H.; Chang, W.-C. (1987) “Electroelution of DNA
and Protein from Polyacrylamide and Agarose Gels.” Biochem. Int.
15, 687-691.
33. Tsay, Y.-G..; Wang, Y.-H.; Chiu,C.-M.; Shen, B.-J.; Lee, S.-C. (2000)
“A strategy for identification and quantitation of phosphopeptides by
liquid chromatography/tandem mass spectrometry.” Anal. Biochem.
287, 55-64.
34. Eng, J.-K.; McCormick, A.-L.; Yates, J.-R. (1994) “An approach to
correlate tandem mass spectral data of peptides with amino acid
sequences in a protein database.” J. Am. Soc. Mass Spectrum. 5,
976-989.
35. Inada, N.; Sakai, A.; Kuroiwa, H.; Kuroiwa, T. (1998)
“Three-dimensional analysis of the senescence program in rice (Oryza
sativa L.) coleoptiles: Investigations of tissues and cells by
fluorescence microscopy.” Planta, 205, 153-164.
36. Kawai, M.; Uchimiya, H. (2000) “Coleoptile senescence in rice
(Oryza sativa L.)” Ann. Bo t -London. 86, 405-414.
37. Lin,Y.-H.; Li,H.-T.; Huang,Y.-C.; Hsieh,Y.-C.; Guan,H.-H.; Liu,M.-Y.;
Chang,T.-I.;Wang,H.-J.; Chen, C.-J. (2006) “Purification,
crystallization and preliminary Xray crystallographic analysis of rice
Bowman-Birk inhibitor from Oryza sativa.” Acta Acta. Cryst. F62,
522-524.
38. Yano,H.; Kuroda, M. (2006) “Disulfide proteome yields a detailed
understanding of redox regulations: a model study of
thioredoxin-linked reactions in seed germination.” Proteomics. 6,
294-300.
39. Zeller, T.; Klung, G. (2000) “Thioredoxins in bacteria: functions in
oxidative stress response and regulation of thioredoxin genes.”
Naturwissenschaften. 93, 259-266.
40. Kobrehel, K.; Yee, B.-C.; Buchanan, B.-B. (1991) “Role of the
NADP/thioredoxin system in the reduction of alpha-amylase and
trypsin inhibitor proteins.” J. Biol. Chem. 266, 16135-16140.
41. Garcia-Olmedo, F.; Salcedo, G..; Sanchez-Monge, R.; Gomez, L.;
Royo, J.; Carbonero, P. (1987) “Plant proteinaceous inhibitors of
proteinases and α-amylases.” Oxford Surveys of Plant Molecular
and Cell Biology., 4, 275-335.
42. Birk Y. (1976) “Proteinase inhibitors from plant sources. “ Methods
in enzymology. 45 B, 695-739.
43. Laskowski, M. Jr.; Kato, I. (1980) Protein inhibitors of proteinases.
Annu. Rev. Biochem. 49, 593-626.
44. Trumper, S.; Follmann, H.; Haberlein, I.(1994) “A novel
dehydroascorbate reductase from spinach chloroplasts homologous to
plant trypsin inhibitor.” FEBS., 352, 159-162.
45. Ryan,C.-A.; Green, T.-R. (1974) ”Proteinase inhibitors in natural
plant protection.”Recent Adv. Phytochem. 8, 123-140