簡易檢索 / 詳目顯示

研究生: 郭青松
Kuo, Ching-Sung
論文名稱: 以有限元素模型處理方法為基礎之腰薦椎生物力學分析
Biomechanical Analyses of the Lumbosacral Spine Based on the Finite Element Modeling Approaches
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 113
中文關鍵詞: 腰椎有限元素分析小面關節姿勢椎間壓力Von Mises 應力Von Mises應變非對稱性
外文關鍵詞: Lumbar Spine, Finite Element Analysis, Facet Joint Force, Postures, Intradiscal Pressure, Von Mises Stress/Strain, Asymmetry
相關次數: 點閱:210下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體的脊椎由於具有許多功能如保護隱藏在內的脊椎神經,給予軀幹強力而柔軟的支撐,提供肌肉附著使身體可以動作平衡與制動等等,它在人類的日常活動中扮演著非常重要的角色。然而不正確的承受負荷、姿勢或者是長期個人職業上的擔負重物,許多症狀或下背痛就從如此的糟的工作環境而產生。脊椎的移動方式是如何影響正常的功能或者是不正確的姿勢或負荷模式怎樣的導致對脊椎的明顯的影響已引起研究者極大的注意。
    有限元素法迄今已使用超過三十年,其中有些用來求解脊椎所遭遇的問題,建構的模型也隨著電腦科技和演算法的進步而發展,而且最近幾年在解決各種由簡化到複雜的問題上得到了新的進展。如我們所知的,有限元素法產生的結果當然和所解決問題的外型、選擇的材料性質、所描述的邊界和外力條件有關,即使其它條件在有限元素模擬執行時維持不變,當中的每一個要件的變化都會導致結果的不同。對早期年代的研究者想有一適當的模型來做脊椎更逼真的生物力學行為模擬來說,由於脊椎骨的後半部份元素的複雜不規則,常會造成一些麻煩。因此早期的研究學者通常會採用對稱的脊椎模型來簡化分析以及避免建構脊椎骨後部不規則形狀的困難。雖然在模型中這樣的對稱思想不致於造成錯誤的結果,不過它似乎也對我們想要的局部的結果造成實際狀態的朦朧不明,譬如在小面關節處的詳細的應力/應變分佈。
    在我們的分析中,使用了三維幾何逼真的腰薦椎模型,它是由一連串在DICOM格式影像檔修正骨質輪廓再予以堆疊形成平滑的STL格式曲面檔案,且設定相關的外力和邊界條件所完成的可執行檔。我們期盼椎骨後部做了細微變化的處理後能幫助了解以前在簡單的外型考慮下沒有發現的細微改變。
    這些有限元素模擬的結果顯示,非對稱的行為會隨著施加負荷的變大更加明顯。如此的現象吸引我們的興趣,去仔細審視嚴格假設非對稱性。從椎骨後半部非對稱性外型的考慮,以及這詳細的非對稱性外型,在施加負荷更大時,不管它分析考慮的是什麼事物,似乎都放大它的效應。因此這現象讓我們相信,如此非對稱行為的放大效應是來自於缺少將肌肉元素放在我們的模型中所致,如果我們採用如此細微的幾何模型然而不考慮來自於肌肉制動的平衡效應,在脊椎模型中的椎骨多處連接將引起中性穩定的問題。

    The human spine plays an important role in the daily activity of the human beings for its multi-functions like the protection of the spinal cord housed within the spine, providing strong, yet flexible support for the trunk of the body, attachment of muscles for activation and balance of movement, etc. While the improper loading, postures or long-term weight-bearing in individual profession, many symptoms or low back pains arise from such bad work conditions. How the moving ways of the spine affect the normal functions or how the improper postures or loading modes result in evident effects on the spine have called much attention of the researchers.
    Finite element methods have been widely used for latest 30 years to solve the encountered spinal disorders, the constructed models also developed with the computer technologies and algorithms, and got a novel progress in solving various problems from simple cases to complicated ones in recent years. As we know that the results of finite element methods intrinsically depend upon the geometry of solved problems, the selected material properties, boundary and loading conditions prescribed. Each of them would result in different situations, even if the other conditions were kept invariant during the performance of finite element simulations. The irregularity of the posterior elements of the vertebrae often causes some trouble for previous researchers to have an appropriate geometrical model to make a more realistic simulation on the biomechanical behavior of the spine. Therefore, the early researchers usually adopt a symmetric spinal model to simplify the analysis and avoid the difficulty of constructing the irregular shapes of the posterior parts of the vertebrae. Although such thought of symmetry in the model did not lead to wrong consequences, it seemed to keep some real status obscure when the local outcome was desired, for example, the detailed stress/strain distributions in the facet joints.
    In our analysis a three-dimensional geometrically realistic model of the lumbosacral spine was built by a series of bony contour corrections on the digital imaging and communications in Medicine (DICOM) image files, and then stacking the contours to form a smooth stereolithography (STL) surface model, setting the corresponding loading and boundary conditions to accomplish the executable model. We expected that the treatments on the tiny change on the irregularity of the posterior parts of the vertebrae would help understand the detailed variations, which were not found before for simple considerations of the geometry.
    Results of these finite element simulations showed that the asymmetric behavior would appear obviously, if the applied loads became larger. Such phenomenon attracted our interest to look over to hypothesize rigorously for the asymmetry. From the consideration of asymmetric geometrical representation of the posterior parts of the vertebrae, and this detailed asymmetric geometry seemed to amplify its effect if the loads were applied more larger, no matter what entities were analyzed. Thus the phenomenon made us believe that such amplifying effect on asymmetry behavior was resulting from lacking of the incorporation of the muscle elements in our model. The multi-connection of the vertebrae in the spine model will give rise to the neutral stability problem if the tiny geometry of the model was adopted while without considering the balance effect coming from the activation of muscles.

    中文摘要-------------------------------------------------------------------------------------------------i ABSTRACT-------------------------------------------------------------------------------------------iii 誌謝------------------------------------------------------------------------------------------------------v LIST OF TABLES-------------------------------------------------------------------------------------x LIST OF FIGURES-----------------------------------------------------------------------------------xi SYMBOLS (ABBREVIATION) -----------------------------------------------------------------xxi CHAPTER 1 INTRODUCTION ---------------------------------------------------------------1 1.1 The Importance of the Human Spine -------------------------------------------------- 1 1.2 The Functional Overview of the Anatomy of the Spine -------------------------- ---3 1.2.1 Support Structure (Weight-Bearing and Cushion Systems) ------------- ---3 1.2.2 Auxiliary Support System (Body Movement Activation System) ---------7 1.2.3 Spinal Nerve Root System (Message Transmission System) -------------11 1.3 Research Motivation, Study Goal, and Outline of the Thesis ---------------------13 CHAPTER 2 REVIEW OF THE FINITE ELEMENT ANALYSES ------------------19 2.1 Classification of the Explored Topics ------------------------------------------------19 2.1.1 Range of Motion (ROM) -------------------------------------------------------19 2.1.2 Von Mises Stress ----------------------------------------------------------------21 2.1.3 Facet Joint Force ----------------------------------------------------------------27 2.1.4 Intradiscal Pressure -------------------------------------------------------------34 2.1.5 Strain Energy in Discs ----------------------------------------------------------38 2.1.6 Degeneration Issues ------------------------------------------------------------ 41 CHAPTER 3 METHODS (MODEL CONSTRUCTION) -------------------------------44 3.1 Generation of the Finite Element Model ---------------------------------------------45 3.1.1 Image Processing: CT, DICOM Files, 3D-Doctor ------------------------- 45 3.1.2 Surface Model Processing for Performance in ABAQUS -----------------48 3.1.3 Material Properties Used in the Present FE Model -------------------------50 (a) Cortical Bones (Cortical Shells), Cancellous Bones, and Posterior Bones -----------------------------------------------------------------------------50 (b) Endplates, Nucleus Pulposus, and Annulus Fibrosus ----------------------53 (c) Facet Joints and Spinal Ligaments --------------------------------------------56 3.1.4 Loading and Boundary Conditions -------------------------------------------61 3.2 Model Solutions -------------------------------------------------------------------------66 3.3 Convergence Tests ----------------------------------------------------------------------73 CHAPTER 4 NUMERICAL RESULTS OF THE ANALYSIS -------------------------76 4.1 Displacements of the L1 Vertebra ; Angle (Rotation) Displacements of Axial Rotation Movement -------------------------------------------------------------76 4.2 Von Mises Stresses/Strains ------------------------------------------------------------78 4.2.1 Under Preload of 300 N --------------------------------------------------------78 4.2.2 Under Preload of 300 N and Bending moments 5 and 10 Nm ------------87 4.2.3 Under Preload of 300 N and Lateral Traction Forces100, 200, and 300N -------------------------------------------------------------------------90 4.3 Facet Joint Forces -----------------------------------------------------------------------91 4.4 Intradiscal Pressures --------------------------------------------------------------------94 CHAPTER 5 DISCUSSION AND CONCLUSIONS OF THE RESULTS -----------96 5.1 Discussion of the Results -------------------------------------------------------------- 96 5.2 Validation of the Analysis ------------------------------------------------------------- 97 5.3 Conclusions of the Thesis ------------------------------------------------------------ 102 5.4 Future Exploration ---------------------------------------------------------------------103 5.5 Future Work of the Following FE Model ------------------------------------------ 104 REFERENCES ------------------------------------------------------------------------------------106

    REFERENCES
    1. Electronic citation from SpineUniverse: www.spineuniverse.com. 2010.
    2. Electronic citation from Cedars-Sinai: www.csmc.edu. 2010.
    3. " Your Healthy Spine ", Mary Rodts, www.spineuniverse.com, 2008.
    4. Electronic citation from Becomehealthynow: www.becomehealthynow.com. 2010.
    5. " The Spinal Disc ", Gary Farr, www.becomehealthynow.com, 2002.
    6. Electronic citation from Wikipedia: en.wikipedia.org/wiki/Ligament. 2010.
    7. Jenkins, DB Hollinshead’s Functional Anatomy of the limbs and back.7thed. Philadelphia. WB Saunders, 1998.
    8. Ellis, Harold; Susan Standring; Gray, Henry David (2005). Gray's anatomy: the anatomical basis of clinical practice. St. Louis, Mo: Elsevier Churchill Livingstone. pp.38, ISBN 0-443-07168-3.
    9. "Introductory Anatomy: Joints", D. R. Johnson, www.leeds.ac.uk/chb/lectures/ana- tomy4.html. 2008.
    10. "Lessons on Massage", Margaret D. Palmer, London Baillière, Tindall and Cox, 1916.
    11. "Save Your Aching Back and Neck: A Patient’s Guide", 2nd Edition, Stewart G. Eidelson, 2002 SYA Press and Research, Inc. San Diego, CA, ISBN 09669252-1-1.
    12. "The Spinal Muscles", Gary Farr, www.becomehealthynow.com, 2003.
    13. Electronic citation from Wikipedia: en.wikipedia.org/ wiki / Antagonist (muscle)
    2010.
    14. Electronic citation from SCIRECOVERY:www.scirecovery.org/anatomy.html 2010.
    15. Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression, a three-dimensional nonlinear finite element study. Spine 1984; 9(2): 120-134.
    16. Lee CK, Kim YE, Lee CS, Hong YM, Jung J, Goel VK. Impact response of the intevertebral disc in a finite element model . Spine 2000; 25(19): 2431-2439.
    17. Cao KD, Grimm MJ, Yang KH. Load sharing within a human lumbar vertebral body using the finite element method. Spine 2001; 26(12): E253-E260.
    18. Baroud G, Nemes J, Heini P, Steffen T. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 2003; 12: 421-426.
    19. Chosa E, Goto K, Totoribe K, Tajima N. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the 3-D finite element method. J Spinal Disord 2004; 17(2): 134-139.
    20. Totoribe K, Chosa E, Tajima N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method. J Spinal Disord 2004; 17(2): 147-153.
    21. Polikeit A. Finite element analyses of the lumbar spine: clinical application. Inaugural-Dissertation, University of Bern, 2002.
    22. Pitzen T, Geisler F, Matthis D, Muller-Storz H, Barbier D, Steudel WI, Feldges A. A finite element model for predicting the biomechanical behaviour of the human lumbar spine. Control Engineering Practice 2002; 10: 83-90.
    23. Arthroscopic and Endoscopic Spinal Surgery: Text and Atlas, 2nd Edition, P. Kam- bin Humana Press Inc., 2005, Totowa, NJ. ISBN 1-58829-522-2.
    24. Shin G. Viscoelastic responses of the lumbar spine during prolonged stooping. Ph.D. dissertation, NCSU, USA, 2005.
    25. Buchler P, Ramaniraka NA, Rakotomanana LR, Iannotti JP, Farron A. A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clinical Biomechanics 2002; 17: 630-639.
    26. Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ. The risk of disc prolapses with complex loading in different degrees of disc degeneration – A finite element analysis. Clinical Biomechanics 2007; 22: 988-998.
    27. Noble PC. Biomechanics of dislocation after total hip replacement. Current Opinion in Orthopaedics 2001; 12: 79-84.
    28. Haberl H, Cripton PA, Orr TE, Beutler T, Frei H, Lanksch WR, Nolte LP. Kinema- tic response of lumbar functional spinal units to axial torsion with and without sup- erimposed compression and flexion/extension. Eur Spine J 2004; 13: 560-566.
    29. Rohlmann A, Zander T, Bergmann G. Comparison of the biomechanical effects of posterior and anterior spine stablizing implants . Eur Spine J 2005; 14: 445-453.
    30. Kettler A, Liakos L, Haegele B, Wilke HJ. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests ? Eur Spine J 2007; 16: 2186-2192.
    31. Siepe CJ, Wiechert K, Khattab MF, Korge A, Mayer HM. Total lumbar disc repla- cement in athletes: clinical results, return to sport and athletic performance. Eur Spine J 2007; 16: 1001-1013.
    32. Lim MR, Loder RT, Huang RC, Lyman S, Zhang K, Sama A, Papadopoulos EC, Warner K, Girardi FP, Cammisa FP Jr. Measurement Error of Lumbar Total Disc Replacement Range of Motion. Spine 2006; 31: E291-E297.
    33. Huang RC, Girardi FP, Cammisa FP Jr, Tropiano P, Marnay T. Long-term flexion- extension range of motion of the prodisc total disc replacement. J Spinal Disord Tech 2003; 16: 435-440.
    34. Huang RC, Girardi FP, Cammisa FP Jr, Lim MR, Tropiano P, Marnay T. Correla tion between range of motion and outcome after lumbar total disc replacement: 8.6-year follow-up. Spine 2005; 30: 1407-1411.
    35. Ito M, Nishida A, Koga A, Ikeda S, Shiraishi A, Uetani M, Hayashi K, Nakamura T. Contribution of Trabecular and Cortical Components to the Mechanical Properties of Bone and Their Regulating Parameters. Bone 2002; 31: 351-358.
    36. Rohlmann A , Zander T, Bergmann G. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement. Clin Biomech 2006; 21: 221-227.
    37. Polikeit A, Ferguson SJ, Nolte LP, Orr, TE. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur. Spine J. 2003; 12: 413-420.
    38. Polikeit A, Ferguson SJ, Nolte LP, Orr, TE. The importance of the endplate for interbody cages in the lumbar spine Eur. Spine J. 2003; 12: 556-561.
    39. Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami RI, Terai T. Three-dimensional finite element analysis of the pediatric lumbar spine. Eur Spine J, 2006; 15(6): 923-929.
    40. Teo EC, Ng HW. First cervical vertebra (atlas) fracture mechanism studies using finite element method. Journal of Biomechanics 2001, 34: 13-21.
    41. Zander T, Rohlmann A, Klockner C, Bergmann G. Effect of bone graft characteristics on the mechanical behavior of the lumbar spine. Journal of Biomechanics 2002; 35: 491-497.
    42. Polikeit A, Nolte LP, Ferguson SJ. Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. Journal of Biomechanics 2004; 37: 1061-1069.
    43. Denoziere G, Ku DN. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. Journal of Biomechanics 2006; 39: 766-775.
    44. Nabhani F, Wake M. Computer modelling and stress analysis of the lumbar spine. Journal of Materials Processing Technology 2002; 127: 40-47.
    45. Shirazi-Adl A, Parnianpour M. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading. Clinical Biomechanics 2000; 15: 718-725.
    46. Shirazi-Adl A. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Journal of Biomechanics 2006, 39: 267-275.
    47. Teo EC, Lee KK, Ng HW, Qiu TX, Yang K. Determination of load transmission and contact force at facet joints of L2-L3 motion segment using FE method. Journal of Musculoskeletal Research 2003; 7(2): 97-109.
    48. Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE. Viscoelastic finite element analysis of a lumbar motion segment in combined compression and sagittal flexion. Spine 2000; 25(3): 310-318.
    49. Lee KK, Teo EC, Qiu TX, Yang K. Effect of Facetectomy on Lumbar Spinal Stabi- lity Under Sagittal Plane Loadings. Spine 2004; 29(15): 1624-1631.
    50. Zander T, Rohlmann A, Burra NK, Bergmann G. Effect of a posterior dynamic imp- lant adjacent to a rigid spinal fixator. Clin Biomech 2006; 21: 767-774.
    51. Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine. European Spine J, 2007; 16(8): 1223-1231.
    52. Rohlmann A, Mann A, Zander T, Bergmann G. Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. European Spine J, 2009; 18: 89-97.
    53. Nachemson AL. The influence of spinal movements on the lumbar intradiscal pres- sure and on the tensile stresses in the annulus fibrosus, Acta Orthopaedica Scandi- navica 1963; 33: 183-207.
    54. Nachemson AL. The load on lumbar disks in different positions of the body. Clini- cal Orthopaedics and Related Research 1966; 45: 107-122.
    55. Nachemson AL. Disc pressure measurements, Spine 1981; 6: 93-97.
    56. Nachemson AL, Morris JM. In vivo measurements of intradiscal pressure. Journal of Bone and Joint Surgery 1964: 46A: 1077-1092.
    57. Andersson GBJ, Ortengren R, Nachemson AL. Intradiscal pressure, intraabdominal pressure and myoelectric back muscle activity related to posture and loading. Clini- cal Orthopaedics and Related Research 1977; 129: 156-164.
    58. Andersson GBJ, Ortengren R, Nachemson AL, Elfstrom MG. Lumbar disc pressure and myoelectric back muscle activity during sitting. Scandinavian Journal of Reha- bilitation Medicine 1974; 6: 104-114.
    59. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New intradiscal pressure mea- surements in vivo during daily activities, Spine 1999; 24: 755-762.
    60. Pecha MD. Herniated nucleus pulposus as a result of emesis in a 20-yr-old man. American Journal of Physical Medicine & Rehabilitation 2004; 83: 327-330.
    61. Rohlmann A, Claes LE, Bergmann G, Graichen F, Neef P, Wilke HJ. Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 2001; 44(8): 781-794.
    62. Rohlmann A, Neller S, Bergmann G, Graichen F, Claes L, Wilke HJ. Effect of an internal fixators and a bone graft on intersegmental spinal motion and intradiscal pressure in the adjacent regions. Eur Spine J 2001; 10: 301-308.
    63. Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine part 2. cervical spine soft tissue responses and biomechanical loading. Clin Biomech 2001; 16: 1-27.
    64. Veronda DR, Westmann RA. Mechanical characterization of skin-finite deforma- tions. J Biomech 1970; 3: 111-124.
    65. Cheung JT-M, Zhang M, Chow DH-K. Biomechanical responses of the interverteb- ral joints to static and vibrational loading: a finite element study. Clin Biomech 2003; 18: 790-799.
    66. Klisch SM, Lotz JC. Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus. Journal of Biomechanics 1999; 32: 1027-36.
    67. Guo LX, Teo EC. Influence prediction of injury and vibration on adjacent compo- nents of spine using finite element methods. J Spinal Disord 2006; 19(2): 118-124.
    68. Kumaresan S, Yoganandan N, Pintar FA, et al. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation. J Orthop Res. 2001; 19: 977-984
    69. Zannoni C, Mantovani R, Viceconti M. Material properties assignment to fin- ite element models of bone structures: a new method. Medical Engineering & Physics 1998; 20: 735-740.
    70. Lee KK, Teo EC. Effects of laminectomy and facetectomy on the stability of the lumbar motion segment. Medical Engineering & Physics 2004; 26: 183-192.
    71. Ramos A, Simoes JA. Tetrahedral versus hexahedral finite elements in numerical modeling of the proximal femur. Med Engng Phys 2006; 28:916-924.
    72. Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE. The dynamic response of L2- L3 motion segment in cyclic axial compressive loading, Clin Biomech 1998; 13 (Suppl): S16-S25.
    73. Yoganandan N, Ray G, Pintar FA, Myklebust JB, Sances A Jr. Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J Bio- mech 1989; 22: 135-142.
    74. Lin CY, Hsiao CC, Chen PQ, Hollister SJ. Interbody Fusion Cage Design Using Integrated Global Layout and Local Microstructure Topology Optimization. Spine 2004; 29(16): 1747-1754.
    75. Penning L. Differences in anatomy, motion, development and aging of the upper and lower cervical disk segments. Clin Biomech 1988; 3: 37-47.
    76. Urban JPG, McMullin JF. Swelling pressure of the lumbar intervertebral discs: infl- uence of age, spinal level, composition and degeneration. Spine 1988; 13: 179 -187.
    77. Jensen CV, Bendix T. Spontaneous movements with various seated workplace adjustments. Clinical Biomechanics 1991; 7: 87-90.
    78. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A. Vali- dity and interobserver agreement of a new radiographic grading system for inter- vertebral disc degeneration: Part I. Lumbar spine. Eur. Spine J 2006; 15: 720-730.
    79. Brown MD, Holmes DC, Heiner AD. Measurement of cadaver lumbar spine motion segment stiffness. Spine 2007; 27: 918-922.
    80. Umehara S, Zendrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 2000; 25: 1617-1624.
    81. Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System, third edition, Lippincott Williams and Wilkins, Philadelphia, 2001.
    82. Natarajan RN, Andersson GBJ. Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability. Computers Structures, 1997 ; 64(5-6): 1291-1297
    83. Pitzen T, Geisler FH, Matthis D, Storz HM, Pedersen K, Steudel WI. The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur Spine J 2001; 10: 23 -29.
    84. Denozi´ere G. Numerical modeling of a ligamentous lumber motion segment, M.S. thesis , Department of Mechanical Engineering , Georgia Institute of Technology, Georgia, USA, 2004.
    85. Goel VK, Ramirez SA, Kong WZ, Gilbertson LG. Cancellous bone Young’s modu- lus variation within the vertebral body of a ligamentous lumbar spine application of bone adaptive remodeling concepts. J Biomech Eng 1995; 117: 266-271.
    86. Goto K, Tajima N, Chosa E, Totoribe K, Kuroki H, Arizumi Y, Takashi A. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. J Orthop Sci 2002; 7: 243-246.
    87. Natarajan RN, Andersson GBJ, et al. Study on effect of graded facetectomy on cha- nge in lumbar motion segment torsional flexibility using three-dimensional conti- nuum contact representation for facet joints. J Biomech Eng 1999; 121: 215-221.
    88. Chen CS, Cheng CK, Liu CL, Lo WH. Stress analysis of the disc adjacent fusion in lumbar spine. Med Eng Phys 2001; 23: 483-491.
    89. Goel VK, Grauer JN, Patel TC, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R, Dick D, Panjabi MM, Serhan H. Effects of Charite´ Artificial Disc on the Implanted and Adjacent Spinal Segments Mechanics Using a Hybrid Testing Protocol. Spine 2005; 30(24): 2755-2764.
    90. Qiu TX, Teo EC, Lee KK, Ng HW, Yang K. Validation of T10-T11 finite element model and determination of instantaneous axes of rotations in three anatomical planes. Spine 2003; 28(24): 2694-2699.
    91. Rohlmann A, Zander T, Bergmann G. Effect of total disc replacement with ProDisc on the biomechanical behavior of the lumbar spine. Spine 2005; 30: 738-743.
    92. Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar mo- tion segment in axial torque alone and combined with compression. Spine 1986; 11: 914-927.
    93. Zander T, Rohlmann A, Calisse J, Bergmann G. Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin Biomech (Bristol, Avon) 2001; 16(Suppl 1): S73-S80.
    94. Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G. Analysis of the influ- ence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 2006; 39: 2484-2490.
    95. Smit T, Odgaard A, Schneider E.Structure and function of vertebral trabecular bone. Spine 1997; 22: 2823-2833.
    96. Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4- C6) under axial loading. J Spinal Disord 2001; 14(3): 201-210.
    97. Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spi- nal stability. Spine 1995; 20: 887-900.
    98. Mosekilde L, Mosekilde L, Danielsen CC. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 1987; 8: 79-85.
    99. Odgaard A, Kabel J, van Rietbergen B et al. Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 1997; 30: 487-495.
    100. Kothari M, Keaveny TM, Lin JC et al. Impact of spatial resolution on the predict- tion of trabecular architecture parameters. Bone 1998; 22: 437-443.
    101. Millard J, Augat P, Link T et al. Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 1998; 63: 482-489.
    102. Overaker D, Langrana NA, Cuitino A. Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Bio- mech Eng 1999; 121: 542-550.
    103. Nicholson PH, Cheng XG, Lowet G, Boonen S, Davie MW, Dequeker J, Van der Perre G. Structural and material mechanical properties of human vertebral cancellous bone. Med Eng Phys 1997; 19: 729-737.
    104. " Vertebral end-plate ", www.mychiro.com.my. 2010.
    105. Lu YM, Hutton WC, Gharpuray VM. Can variations in intervertebral disc height affect the mechanical function of the disc? Spine 1996; 21: 2208-2216.
    106. Goel VK, Kim YE, Lim T-H, and Weinstein JN. An analytical investigation of the mechanics of spinal instrumentation. Spine 1988; 13: 1003-1011.
    107. Schultz A, Warwick D, Berkson M, Nachemson AL. Mechanical properties of hu- man lumbar spine motion segments. Part 1: Responses in Flexion, Extension, Late- ral Bending and Torsion. J Biomech Eng 1979; 101: 46-51.
    108. Pitzen T, Matthis D, Muller-Storz H et al. [Primary stability of 2 PLIF (posterior lumbar interbody fusion) techniques--a biomechanical and finite element analysis]. Zentralbl Neurochir 1999; 60: 114-120.
    109. Frei H, Oxland TR, Rathonyi GC, Nolte LP. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine 2001; 26: 2080-2089.
    110. Electronic citation from www.chrislangton.co.uk/clip/html/Aspects of Osteoporosis /skeleton bone.html.
    111. Iatridis JC, Weidenbaum M, Setton LA, Mow VC. Is the nucleus pulposus a solid or a fluid ? Mechanical behaviors of the nucleus pulposus of the human interver- tebral disc. Spine 1996; 21 (10): 1174-1184.
    112. Electronic citation from Drdaviddyeh: drdaviddyeh.com/anatomy.html. 2010.
    113. Electronic citation from Wikipedia: en.wikipedia.org/wiki/facet joint. 2010.
    114. " Facet syndrome ", Bill Gallagher, www.eastwestrehab.com/index.php/conditions/ entry/facet _syndrome/, 2010.
    115. Electronic citation from Stemcelldoc: stemcelldoc.wordpress.com. Nov. 2009.
    116. Electronic citation from Cleveland Clinic: my.clevelandclinic.org/disorders/facet joint syndrome/, 2010.
    117. White III, A. A., and Panjabi, M. M., Clinical Biomechanics of the Spine, second edition, J.B. Lippincott Company, Philadelphia, 1990.
    118. "Spinal Ligaments and Tendons",Stewart G. Eidelson, www.spineuniverse.com, 2010.
    119. "Biomaterials Tutorial", Ari Karchin, www.uweb.engr.washington.edu/research/tut- orials/mechproperties.html, 2010.
    120. Freeman JW, Kwansa AL. Recent Advancements in Ligament Tissue Engineering: The Use of Various Techniques and Materials for ACL Repair Recent Patents on Biomedical Engineering 2008; 1: 18-23.
    121. Kim YE, Goel VK, Weinstein JN, Lim TH. Effect of disc degeneration at one level on the adjacent level in axial mode. Spine 1991; 16(3): 331-335.
    122. Lacroix D, Chateau A, Ginebra MP, Planell JA. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 2006; 27: 5326-5334.

    下載圖示 校內:2011-08-09公開
    校外:2011-08-09公開
    QR CODE