簡易檢索 / 詳目顯示

研究生: 洪誌臨
Hong, Jhih-Lin
論文名稱: 應用微流體單細胞阻抗量測晶片於不同癌症細胞電性分析之研究
Electrical Characteristic Analysis of Various Cancer cells Using Microfluidic Device Based on Single-cell Impedance Measurement
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 49
中文關鍵詞: 單細胞捕捉細胞操控細胞阻抗量測等效電路模型微流體裝置
外文關鍵詞: Single-cell trap, Cell manipulation, Cell impedance measurement, Equivalent circuit model, microfluidics
相關次數: 點閱:151下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於MEMS技術的成熟,使的微流體裝置能夠輕易的製作並且達到單一細胞的的研究等級(奈米),本論文提出單一細胞分析方法,其比採取一群作分析提供了更精確及更深入的資訊對於生物細胞體的研究。阻抗量測是一種可以用來區分且分析不同細胞的特性的技術,更深入的地認識細胞個體差異,資訊傳遞以及藥物刺激之影
    因此,本研究使用可操作與捕捉單一顆細胞的微流體晶片,針對四種不同的癌細胞進行阻抗量測,包含人類乳癌細胞 (MCF-7、 MDA-MB-231)、人類子宮頸癌細胞 (Hela) 和人類肺腺癌細胞 (A549),藉由實驗結果顯示,可以看到四種細胞阻抗上的差異。同時建立單細胞等效電路模型去模擬細胞的阻抗,進而得到不同細胞之間在電特性上參數的差異。藉由實驗與模擬結果,探討隨著量測電壓的增加對細胞阻抗的影響,進而定出最佳的量測電壓去設計單細胞阻抗量測的微流體裝置

    Electrical impedance spectroscopy (EIS) technique is used to analyze the character of electrochemical material for biomedical application. This paper presents a fast and low-cost manner to differentiate the four kinds of cells using impedance measurement in different voltage and frequency. Four kinds of cells (HeLa, MDA-MB-231, A549 and MCF-7) are analyzed and characterized on impedance by a trap-and-measure device. The impedance spectrums are obtained by the impedance analyzer at operating voltage of 0.2-1V and frequency from 20 to 101 kHz. According to the magnitude of impedance measurement, 0.4 V is the optimized operating voltage to distinguish the four kinds of cells most significantly. For the same cell line (MDA-MB-231 and MCF-7), the magnitude and phase are both distinguishable at 1.0V. In addition, an equivalent circuit model is established and fits with the experimental results. The circuit can be modeled electrically as cell impedance in parallel with capacitance of interfacial geometric per unit length of the electrode layout and in series with a pair of cell spreading resistance. The maximum decrease of the cytoplasm resistance occurs at different segments of operating voltage. For the A549 cell, the MDA-MB-231 cell, the MCF-7 cell and the HeLa cell, the maximum resistance variations are in 0.8-1.0V,0.8-1.0V,0.6-0.8V, and 0.4-0.6V, respectively. Because a strong electric filed may increase the exchange of ions between the cytoplasm and the culture medium.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Introduction to Cell Capture 2 1.4 Mechanism of Cell Manipulating 4 1.5 Cell Impedance Analysis 6 1.6 Organization of the Dissertation 7 CHAPTER 2 ELECTRICAL MODELING OF SINGLE CELL 9 2.1 Cell Position Using DEP forces 9 2.1.1 Positive and Negative DEP Forces 9 2.2 Double Layer Effects 12 2.3 Electrical Modeling 14 CHAPTER 3 CHIP FABRICATION AND EXPERIMENTAL SETUP 18 3.1 Chip Fabrication 19 3.1.1 MEMS Process 19 3.1.2 Fabrication of Glass Patterns 20 3.2 Experimental Setup 21 3.2.1 Sample and Chip Preparation 21 3.2.2 Experimental Setup 23 3.2.3 Measurement system 24 3.3.4 Cell Model 25 CHAPTER 4 RESULTS AND DISCUSSION 28 4.1 Single cell trapping 28 4.2 Cell characteristic analysis 30 4.3 Cell characteristic analysis 34 CHAPTER 5 CONCLUSIONS 45 REFERENCES 46

    [1] R.M. Hochmuth, “Micropipette aspiration of living cells,” Journal of Biomechanics, vol. 33, pp.15-22, 2000.
    [2] A. Revzin, R. G. Tompkins and M. Toner, Langmuir, “Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes,” Journal of Lab on a Chip, vol. 5, pp. 30-37, 2005.
    [3] D. Di Carlo, N. Aghdam and L. P. Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
    [4] L. S. Jang, and M. H. Wang, “Microfluidic device for cell capture and impedance measurement,” Biomedical Microdevices, vol. 9, pp. 737-743, 2007.
    [5] Curtis, Jennifer E., Koss, Brain A., Grier, and David G. "Dynamic holographic optical tweezers," Optics Communication, vol. 207, pp.169-175, 2002.
    [6] A. Ashkin et al., “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature, vol. 348, pp. 346-348, 2000.
    [7] Liz Y. Wu, Dino Di Carlo, and Luke P Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
    [8] B. Le Pioufle , P. Surbled, H. Nagai, Y. Murakami, K.S. Chun, E. Tamiya, and H. Fujita, “Living cells captured on a bio-microsystem devoted to DNA injection,” Materials Science and Engineering, vol. C 12, pp. 77-81, 2000.
    [9] B. M. Taff and J. Voldman, “A scalable addressable positive-dielectrophoretic. cell-sorting array,” Analytical Chemistry, vol. 77, pp. 7976-7983, 2005.
    [10] James MUYS, M. M. ALKAISI, J. J. EVANS1 and J. NAGASE, “Biochip- Cellular analysis by atomic force microscopy using dielectrophoretic manipulation,” Japanese Journal of Applied Physics, vol. 44, No. 7B, pp. 5717-5723, 2005.
    [11] T. P. Hunt, and R. M. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed Microdevices, vol. 8, pp. 227-230, 2006.
    [12] Junya Suehiro, Akio Ohtsubo, Tetsuji Hatano, and Masanori Hara, “Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip,” Sensors and Actuators B, vol. 119, pp. 319-326, 2006.
    [13] Ramos, A., Morgan, H., Green, N.G., and Castellanos, A., “AC electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D: Applied Physics, vol. 31, pp. 2338-2353, 1998.
    [14] Pohl, Herbert A., and Pollock, Kent, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
    [15] Bakewell DJG, Hughes MP, Milner JJ, and Morgan H, “Dielectrophoretic manipulation of avidin and DNA,” Proceedings 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998
    [16] Morgan H, Hughes MP, and Green NG “Separation of Sub-Micron Particles by Dielectrophoresis,” Biochip Journal, vol. 77, pp. 516-525, 1999.
    [17] J. Yang, Y. Huang, X. B.Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
    [18] T.B. Jones, “Electromechanics of Particles,” Cambridge University Press, 1995.
    [19] Erwan Lennon1, Serge Ostrovidov1, Vincent Senez2 and Teruo Fujii1, “Dielectrophoresis, cell culture, and electrical impedance spectroscopy applied to adherent cells in a single biochip,” Proceedings of International Conference on Microtechrologies in Medicine and Biology, pp. 165-168, 2006.
    [20] Charlotte C. Kwong, Nan Li, and Chih-Ming Ho, “Studies of deionization and impedance spectroscopy for blood analyzer,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 60030N, 2005.
    [21] Tjitske Heida, Wim L. C. Rutten, and Enrico Marani, “Dielectrophoretic trapping of dissociated fetal cortical rat neurons,” IEEE Transactions on biomedical engineering, vol. 48, no. 8, 2001.
    [22] Zhe Yu, Guangxin Xiang, Liangbin Pan,Lihua Huang, Zhongyao Yu, Wanli Xing, and Jing Cheng, “Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips,” Biomedical Microdevices, pp. 311-324, 2004.
    [23] Joel Voldman, Rebecca A. Braff, Mehmet Toner, Martha L. Gray, and Martin A. Schmidt, “Holding forces of single-particle dielectrophoretic traps,” Biophysical Journal, vol. 80, pp. 531-541, 2001.
    [24] Schnelle, T., R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller, “3-Dimensional electric-field traps for manipulation of cells: calculation and experimental verification,” Biochimica et Biophysica Acta, vol. 1157, pp.127-140. 1993.
    [25] Manaresi, N., A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, “A CMOS chip for individual cell manipulation and detection,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.
    [26] Tomoyuki Yasukawa, Masato Suzuki, Takashi Sekiya, Hitoshi Shiku, Tomokazu Matsue, “Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis,” Biosensors and Bioelectronics, vol. 22, pp. 2730-2736, 2007.
    [27] Voldman, J., M. Toner, M. L. Gray, and M. A. Schmidt, “Design and analysis of extruded quadrupolar dielectrophoretic traps,” Journal of Electrostatics, vol. 57, pp. 69-90, 2003.
    [28] Adam Rosenthal, and Joel Voldman, “Dielectrophoretic traps for single-particle patterning,” Biophysical Journal, vol. 88, pp. 2193-2205, 2005
    [29] Green, N.G., Ramos, A., Gonzalez, A., Castellanos, A., and Morgan, H., “Electrothermally induced fluid flow on microelectrodes,” Journal of Electrostatics, vol. 53, pp. 71-87, 2001.
    [30] Gonzalez, A., Ramos, A., Morgan, H., Green, N., and Castellanos, A., “Electrothermal flows generated by alternating and rotating electric fields in Microsystems,” Journal of Fluid Mechanics, vol. 564, pp. 415-433, 2006.
    [31] A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green and H. Morgan, “Electrohydrodynamics and dielectophoresis in microsystems: saling laws,” Journal of Physics D: Applied Physics, vol. 36, pp. 2584-2579, 2003.
    [32] M. Lian, N. Islam and J. Wu, “AC electrothermal manipulation of conductive fluids and particles for lab-chip applications”, IET Nanobiotechnoly, vol. 1 no. 3, pp. 36–43. 2007
    [33] Jang, L. S., Huang, P. H,. Lan, K. C., “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes”, Biosensors and Bioelectronics, vol. 24, pp. 3637-3644, 2009.
    [34] T. Heida, W. L. C. Rutten, E. Marani, “Understanding dielectrophoretic trapping of neuronal cells: modeling electric field, electrode-liquid interface and fluid flow”, Journal of Physics D: Applied Physics, vol. 35, pp. 1592-1602. , 2002
    [35] Adam Rosenthal, and Joel Voldman, “Dielectrophoretic traps for single-particle patterning,” Biophysical Journal, vol. 88, pp. 2193-2205, 2005.
    [36] K. H. Gilchrist, L. Giovangrandi, and G. T. A. Kovacs, “Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening,” The 11th International Conference on Solid-State Sensors and Actuators, pp. 10-14, 2001.
    [37] M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, and S. Morikawa, “Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virus-infected endothelial cell monolayers,” Archives of Virology, vol. 149, pp. 1279-1292, 2004.
    [38] K. H. Gilchrist, L. Giovangrandi, R. H. Whittington, and G. T. A. Kovacs, “Sensitivity of cell-based biosensors to environmental variables,” Biosensors & Bioelectronics, vol. 20, pp. 1397-1406, 2005.
    [39] L. Ye, T.A. Martin, C. Parr, G.M. Harrison, R.E. Mansel, W.G. Jiang, “Biphasic effects of 17-β-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells”, Journal of Cell. Physiology, vol. 196, pp. 362–369, 2003.
    [40] I. Giaever and C. R. Keese, “TOXIC ? CELLS CAN TELL,” Chemtech, vol. 22, pp. 116-125, 1992.
    [41] H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp.869-871, 1951.
    [42] Gouy, G., 1909. Comtes Rendus of the French Academy of Sciences, 149,654,1910.Journal of Physics, 4, 9, 457.
    [43] Chapman, D.L., 1913. Philosophical Magazine, 6, 25, 475.
    [44] Pecorelli, S., Favalli, G., Zigliani, L., Odicino, and F., “Cancer in women,” International Journal of Gynecology & Obstetrics, vol. 82(3), pp. 369-379, 2003.
    [45] Sharrer, T., “HeLa" Herself,” The Scientist, vol. 20, no. 7, pp. 22, 2006.
    [46] Ling-Sheng Jang, Min-How Wang., “Microfluidic device for cell capture and impedance measurement” Biomed Microdevices, vol. 9, no 5, pp 737-743, 2007.
    [47] TAO SUN, NICOLAS G. GREEN, HYWEL MORGAN., “ANALYTICAL AND NUMERICAL MODELING METHODS FOR IMPEDANCE ANALYSIS OF SINGLE CELLS ON-CHIP” NANO: Brief Reports and Reviews, vol. 3, no. 1, pp 55–63, 2003.
    [48] Hywel Morgan, David Holmes, “Nicolas Green., High speed simultaneous optical and impedance analysis of single particles” Proceedings of SPIE, vol.5836, pp 263-272, 2005.

    下載圖示 校內:2012-08-27公開
    校外:2012-08-27公開
    QR CODE