簡易檢索 / 詳目顯示

研究生: 蔡東融
Tsai, Dong-rong
論文名稱: 菱形驅動機構史特靈引擎之熱力循環量測
Measurement of Thermodynamic Cycle in a Rhombic-Drive Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 92
中文關鍵詞: 菱形驅動機構實驗量測熱力循環史特靈引擎
外文關鍵詞: Experiment Measurement, Thermodynamic Cycle, Rhombic Drive, Stirling Engine
相關次數: 點閱:92下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對β型菱形驅動機構史特靈引擎進行熱力循環量測。首先引用Cheng and Yu [26]史特靈引擎熱力模式,利用此模式預測汽缸內部工作流體壓力及體積的循環變化,以及史特靈引擎在不同幾何參數下對於性能的影響。在實驗方面,本研究首先自製使用菱形驅動機構的史特靈引擎,引擎內部使用的工作流體為空氣,而熱源是以電熱器供給。本研究利用壓力感測器及雷射位移計觀測汽缸內部壓力變化及活塞運動軌跡,並同時於飛輪軸裝置編碼器,以量測引擎轉速。另外製作不同外徑的移氣器與三組不同轉動慣量的飛輪,再利用電熱器給予史特靈引擎不同加熱量,以探討在不同參數下,引擎性能的變化。
    研究結果發現:將加熱端溫度提高,在實驗量測與熱力分析皆可使史特靈引擎之輸出功提高;再生通道間隙(G)為0.0006 m時可使史特靈引擎產生最大轉速,其轉速為3140 rpm。而在G=0.0004 m時,可使史特靈引擎產生最大輸出功,其最大輸出功率為11.2 W;改變飛輪的轉動慣量,對於汽缸內部壓力的變化並無太大改變;本研究所量測之P-V圖及熱效率,在G=0.0004 m及Th=1200 K時,與Cheng and Yu [26]之理論模式最為相近。

    The present study is aimed at performance measurement of a beta-type Stirling engine with rhombic drive mechanism. The cyclic variation of pressure and volume of the working medium in the cylinder can be predicted by using the analytical model proposed by Cheng and Yu [26], and the influence on performance of the geometric parameters of Stirling engine is evaluated. In addition a 10-W Stirling engine with rhombic drive is made in this study. The working medium used in the the engine is air, and engine is heated by an electric heater in the experiment. By installing a pressure transducer and a laser displacement sensor, the variation of pressure inside the cylinder and trajectory of piston is measured. Meanwhiles, the rotational speed of the engine can be obtained by a rotary encoder connected to the shaft of the flywheel. Displacers with different outside diameter and flywheels with different moments of inertia are tested. And various heat sources are considered during the test of engine. In the experiments, a comparison in performance based on different operating parameters is attempted.
    Results show that an increase in the heat source temperature yields a great increase in the power output of the Stirling engine. A similar trend is found both in the experiments and the simulation. The Stirling engine produces the highest rotational speed when the regenerative channel width (G) is settose 0.0006 m. The highest rotational speed is around 3140 rpm. When G =0.0004 m, the Stirling engine exhibits maxium power output and the maximum power
    output is 11.2 W. A change in the flywheel moment of inertia leads to no appreciable difference in the cyclic variation of pressure in the cylinder. The experimental data for the thermal efficiency of the engine basically agree with the predictions from the anslytical model proposed by Cheng and Yu [26].

    摘要 I ABSTRACT II 誌謝 IV 目錄 VI 表目錄 IX 圖目錄 X 符號索引 XIV 第一章 序論 1-1研究背景與動機 1 1-2史特靈引擎的發展及特點 2 1-2-1史特靈引擎的發展史 2 1-2-2史特靈引擎的基本特點 3 1-3研究目的 4 1-4論文架構 5 第二章 史特靈之理論模式 2-1機構運動 6 2-1-1菱形驅動結構 6 2-1-2位移方程式 6 2-2熱力模式 7 2-2-1理論模式 7 2-3模擬結果 14 2-3-1 改變熱源溫度之影響 15 2-3-2 改變再生通道間隙之影響 15 第三章 史特靈引擎製作與實驗設備 3-1 史特靈引擎設計概念 17 3-2史特靈引擎機構設計與製造 18 3-3實驗量測設備 20 3-3-1加熱設備 20 3-3-2溫度量測系統 21 3-3-3壓力量測系統 21 3-3-4位移計量測系統 22 3-3-5轉速量測系統 22 3-3-6資料擷取系統 22 3-4實驗步驟 23 第四章 結果與討論 4-1 改變參數對於P-V圖之影響 24 4-2 改變參數對於引擎轉速之影響 25 4-3 改變參數對於史特靈引擎性能之影響 26 4-4 實驗結果與模擬之比較 27 第五章 結論與建議 5-1 結論 29 5-2 未來建議 30 參考文獻 32 表目錄 36 圖目錄 45 附錄 86

    1. B. Ross, “Status of the Emerging Technology of Stirling Machines, ” IEEE AES System Magine, Vol. 10, pp.34-39, 1995
    2. J. E. Thorsen, J. Bovin and H. Carlsen, “3 kW Stirling Engine for Power and Heat Production, ”Energy Conversion Engineering Conference, Proceedings of the 31th Intersociety, Vol. 2, pp. 1289-1294, 1996
    3. H. Carlsen, N. Ammundsen and J. Traerup, “40 kW Stirling Engine for Solid Fuel, ” Energy Conversion Engineering Conference, Proceedings of the 31th Intersociety, Vol. 2, pp. 1301-1306, 1996.
    4. N. Jensen, J. Werling, H. Carlsen and U. Henriksen,“CHP from Updraft Gasifier and Stirling Engine,” Proceedings of 12th European Biomass Conference, Vol. 2, pp. 726-729 , 2002.
    5. K. L. Linker, D. R. Adkins and K. S. Rawlinson, “Testing of the STM4-120 Kinematic Stirling Engine for Solar Thermal Electric Systems, ”Energy Conversion Engineering Conference, Vol. 5, pp. 2231-2236, 1989.
    6. D.M. Berchowitz, “The Development of a 1 kW Electrical Output Free Piston Stirling Engine Alternator Unit,” The 18th Intersociety Energy Conversion Engineering Conference, Orlando, Florida, pp. 897-901, 1983.
    7. C. D. West, Principles and Applications of Stirling Engines, Van Nostrand Reinhold, New York, 1986.
    8. C. M. Hargreaves, The Philips Stirling Engine, Elsevier Science, Netherlands, 1991.
    9. A. Ross, Making Stirling Engines , Ross Experimental, 1993.
    10. K. Hirata, “Performance Evaluation For a 100W Class Stirling Engine,” Proceedings of 8th International Stirling Engine Conference, pp. 19-28, 1997.
    11. 石光偉,利用焚化爐能源推動史特靈引擎發電之可行性分析,成功大學機械研究所碩士論文,台南,民國89年。
    12. N. Singh, “Effect of Solar Collector Design Parameters on the Operation of Solar Stirling Power System, ”Fuel and Energy Abstracts, Vol. 38, pp. 243, 1997.
    13. K. Hirata, “Development of a Small 50W Class Stirling Engine, ”6th International Symposium on Marine Engineering, Vol. 1, pp. 235-240, 2000.
    14. R. Stirling, “Improvements for Diminishing the Consumption of Fuel,and in Particular an Engine Capable of Being Applied to the Moving(of) Machinery on a Principle Entirely New, ’’US Patent No. 4081, 1816.
    15. G. Walker, Stirling Engines, Oxford University Press, New York, 1980.
    16. G. Walker and J.R. Senft, Free Piston Stirling Engine, Springer-Verlag, New York, 1985.
    17. A. J. Organ, The Regenerator and the Stirling Engine, Mechanical Engineering Publications, London, 1997.
    18. J. Chen, Z. Yan, L. Chen, and B. Andresen, “Efficiency Bound of a Solar-Driven Stirling Heat Engine System, ”International Journal of Energy Resarch , Vol. 22, pp. 805-812, 1998.
    19. C. Audy, M. Fischer, and E.W. Messerschmid, “Nonsteady Behaviour of Solar Dynamic Power Systems with Stirling Cycle for Space Stations, ” Aerospace Science and Technology, Vol. 3, pp. 49-58, 1999.
    20. G. T. Reader, I. J. Potter, E. J. Clavelle, and O. R. Fauvel, “Low Power Stirling Engine for Underwater Vehicle Applications, ”Underwater Technology, Proceedings of the 1998 International Symposium on, pp. 411-416, 1998.
    21. 賴建宏,史特靈式密閉低溫致冷器的模擬分析,清華大學動機研究所碩士論文,新竹,民國80年。
    22. 許智倫,雙缸式史特靈引擎之系統動態模擬,台灣大學機械研究所碩士論文,台北,民國84年。
    23. 許世宗,利用史特靈引擎回收焚化爐廢熱之熱傳分析,成功大學機械研究所碩士論文,台南,民國90年。
    24. 施長江,史特靈引擎菱形驅動結構之機構設計與熱流分析,大同大學機械研究所碩士論文,台北,民國93年。
    25. 林育煌,使用菱形驅動機構之同軸式史特靈引擎研究,大同大學機械研究所碩士論文,民國94年。
    26. C. H. Cheng and Y. J. Yu, “Analytical Model for Predicting Thermodynamic Cycle and Thermal Efficiency of a Beta-Type Stirling Engine with Rhombic-Drive, ’’Revised by Renewable Engine, 2009.
    27. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, Wiley, New York, 1996.

    下載圖示 校內:立即公開
    校外:2009-07-10公開
    QR CODE