簡易檢索 / 詳目顯示

研究生: 劉仕佑
Liu, Shih-Yu
論文名稱: 低溫離子佈植對N通道場效電晶體漏電電流改善之研究
The Study of Improvement in Junction Leakage Current of N-MOSFETs by Cryogenic Implantation
指導教授: 王水進
Wang, Shui-Jinn
共同指導教授: 江振國
Chiang, Chen-Kuo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 離子佈值線缺陷
外文關鍵詞: Ion Implantation, Dislocation
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電晶體特徵尺寸的持續微縮,接面深度也便得越來越淺,伴隨而來的是元件製作在製造技術上變得更加難以控制。在 32 奈米製程或是更先進的製程技術上,因離子佈植後所產生的缺陷需要能更有效的抑制或是完全的消除,改善瞬間增益擴散效應(Transient Enhanced Diffusion)、短通道效應 (Short Channel Effect) 及臨限電壓 (Threshold Voltage) 之相關問題亦是先進製程所需克服的難題之一。製程技術的演進,超淺接面的應用對於傳統的快速回火機制 (RTP),在溫度上的要求是越來越低,但這也導致硼 (B) 會發生表面鈍化、聚合 (inactivation and clustering) 及瞬間增益擴散效應 (TED) 效應在環型佈植 (Halo/Pocket Implantation) 及通道上更加嚴重化。為了改善短通道效應 (SCE),高劑量摻雜的使用是必然的,但相對的影響則是使得元件在臨限電壓的限定電壓上會變得更加難以控制。缺陷的產生或殘留是從離子佈植後便存在,即使在 源極/汲極 (Source/Drain) 經過了快速熱回火製程 (RTP) 及雷射回火 (LRTP) 的高溫回火下還是依舊殘留著些許的缺陷,同時這些缺陷的產生也影響到元件漏電流的增加。
    於 Wafer Acceptance Test (WAT) 電性量測中,我們從PN 接面參數中驗證出,在使用全低溫條件時的漏電流數據比起一般傳統室溫條件有著大約近 1.3x 的改善,同時Ion-Ioff 有著約 3% 的提升,且DIBL參數並沒有因此而衰退。在進一步的實驗當中,我們在摻雜步驟中實驗了幾組低溫組合的搭配分析,結果顯示,只需在nSDE Layer中使用Ge及C元素及nS/D Layer中使用As及P元素,就能達到與全低溫條件中相同的電性結果。

    Due to the dimension scaling down of CMOS, the depth of ultra shallow junction (USJ) becomes more shallower, the following problems cause the difficulty of device performance control. The implantation induced defect engineering becomes more critical at 32nm and beyond. The improvement of transient enhanced diffusion (TED), short channel effect (SCE) and threshold voltage (Vth) variability is concerned and needed in advanced CMOS fabrication. The continuous USJ scaling requires lower spike annealing temperature via rapid thermal processing (RTP) which induces boron inactive and clustering, or causing more serious TED effect in channel or halo region. Besides, in order to improve SCE, a higher dosage is required but with degraded Vth variation for scaled USJ devices. Defects remained in pre-amorphization implantation (PAI) even though the RTP and laser spike annealing (LRTP) of source/drain (S/D) layer are applied, and they are responsible for the device leakage.

    To maintain abrupt junction profiles, germanium (Ge) PAI and carbon (C) co-implants were applied before BF2 halo implantation. The incorporated carbon helps to suppress boron TED and enhances dopant activation, it also forms interstitial/clusters and reduces the formation of extended defects. Now in this thesis, The main idea is on the use of cryogenic ion implantation technology and its reduction of defects with several species (like Ge, C, etc.) used and to find out the critical step of using cryogenic feature simultaneously.

    The whole cryo-implantation condition shows a better result than room temperature condition with leakage current improvement of 1.3x, Ion-Ioff improvement of 3%, and without DIBL degradation. Experiments based on split conditions for the cryo-implantation process with nSDE Layer @ Ge + C and nS/D Layer @ As + P show a comparable gains as compared with the whole cryo-implantation condition. Though the improvement in the leakage current is not obvious, the proposed cryo-implantation technology is expected to be a prospect tool for USJ engineering.

    中文摘要 I 英文摘要 III 誌謝 V 表目錄 VIII 圖目錄 IX 第一章 導論 1 1-1 半導體積體電路發展 1 1-2 S/D摻雜製程發展 3 1-3 先進製程所面臨到問題 6 1-4 研究動機 8 第二章 元件基本理論與低溫離子佈植槪述 10 2-1 半導體元件之非理想效應 10 2-1-1 短通道效應 11 2-1-2 瞬間增益擴散效應 12 2-1-3 汲極引致能障下降效應 14 2-2 MOSFET之漏電流機制 18 2-2-1 PN 接面漏電流 18 2-2-2 閘極引發汲極漏電流 19 2-3 低溫離子佈植槪述 21 第三章 實驗及量測機台介紹 22 3-1 實驗機台介紹 22 3-1-1 高電流離子佈植機 (High Current Ion Implantation) 22 3-1-2 快速加熱回火系統 (Rapid Thermal Processing) 33 3-1-3 雷射瞬間回火系統 (Laser Spike Annealing) 36 3-2 量測機台介紹 39 3-2-1 二次離子質譜分析儀 (Secondary Ion Mass Spectroscopy) 39 3-2-2 熱波法 (Thermal Wave) 40 3-2-3 穿透式電子顯微鏡 (Transmission Electron Microscopy) 41 3-2-4 電性量測機台 (Wafer Acceptance Test Measurement) 42 第四章 實驗流程介紹 43 4-1 控片實驗 43 4-1-1 低溫離子植入佈植特性簡介 (Cryogenic Ion Implantation) 43 4-1-2 CARBON INFLUENCE 45 4-1-3 NLDD + POCKET 47 4-1-4 TEMPERATURE EFFECT 54 4-1-5 PAI EFFECT 56 4-2 TCAD SIMULATION 57 4-3 低溫離子佈植技術總結 63 第五章 元件製作流程與電性量測分析 64 5-1 元件製作流程 64 5-1-1 前言 64 5-1-2 元件之製作流程介紹 64 5-1-3 nSDE 離子佈植步驟 66 5-1-4 nS/D離子佈植步驟 66 5-1-5 實驗條件 69 5-2 電性量測分析 70 第六章 結論與未來研究方向建議 81 6-1 結論 81 6-2 未來研究方向建議 83 參考文獻 84

    [1] FEP_2011Tables, ITRS, http://www.itrs.net/
    [2] 黃昌琪, 聯華電子先進技術開發邏輯處, IC 製程概論與先進製程整合, p. 68, 2011.
    [3] Anbae. Lee, et al., “How can we improve sub 40nm Transistor properties by using Ion implantation”, Ion Implantation Technology, pp. 37-40, 2010.
    [4] John O. Borland, et al., “22nm Node P+ USJ Formation Using PAI & HALO Implantation With Laser Annealing”, Ion Implantation Technology, pp. 119-122, 2010.
    [5] H. Sayama, et al., “Deep levels induced by high‐energy boron ion implantation into p‐silicon”, Applied Physics Letters, Vol.61, pp. 1682-1684, 1989.
    [6] 賴建銘, “銦環形佈植及CESL應變技術應用於不同閘極結構90奈米金氧半場效電晶體之研究”, 國立成功大學博士論文, 2007.
    [7] T. Skotnicki, et al., “Innovative Materials, Devices, and CMOS Technologies for Low-Power Mobile Multimedia”, Electron Devices, IEEE Transactions on, Vol.55 No.1, pp. 96-130, 2008.
    [8] 林崇勳, 胡正明, “應用於鰭式場效電晶體精簡模型的物理特性”, 國家奈米元件實驗室奈米通訊, Vol.14 No.2, pp. 3-6, 2007.
    [9] Darsen Duane Lu, et al., “Modeling of double-gate MOSFETs with common gates (BSIM)”, http://www.eecs.berkeley.edu/.
    [10] 林鴻志, “奈米金氧半電晶體元件技術發展驅勢(II)”, 國家奈米元件實驗室奈米通訊, Vol.7 No.2, pp. 1-9, 1990.
    [11] H. Kawaguchi, et al., “A Robust 0.15μm CMOS Technology With CoSi2 Salicide And Shallow Trench Isolation”, Symposium on VLSI Technology Digest of Technical Papers, pp. 125-126, 1997.
    [12] Z. H. Liu, et al., “Threshold voltage model for deep-submicrometer MOSFETs”, Electron Devices, IEEE Transactions on, Vol.40 No.1, pp. 86-95, 1993.
    [13] 施敏, “半導體元件物理與製作技術(第二版)”, 國立交通大學出版社, 2002.
    [14] Farzan Fallah, et al., “Massoud Pedram Standby and Active Leakage Current Control and Minimization in CMOS VLSI Circuits”, IEICE Trans. on Electronics, Special Section on Low-Power LSI and Low-Power IP, Vol.E88 No.C-4, pp. 509-519, 2005.
    [15] 莊達人, “VLSI 製造技術”, 高立圖書, 2006.
    [16] 蕭宏, “半導體製程技術導論”, 全華圖書, 2012.
    [17] Chun Feng Nieh, et al., “REDUCING LOCAL MISMATCH OF DEVICE USING CRYO-IMPLANTATION”, US20110039390A1, 2011.
    [18] 林中漢, “以碳硼烷離子取代硼離子植入用於淺接面之特性研究”, 國立成功大學碩士論文, 2011.
    [19] APPLIED MATERIALS, applied_vantage_vulcan PDF.
    [20] C. Y. Yang, et al., “Reduction of Thermal Induced Pattern Loading and Device Sensitivity by Various Rapid Thermal Processing Models”, IWJT, pp. 73-76, 2012.
    [21] I. Ahsan, et al., “RTA-Driven Intra-Die Variations in Stage Delay and Parametric Sensitivities for 65nm Technology”, VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, pp. 170-171, 2006.
    [22] Ishtiaq Ahsan, et al., “Impact of intra-die thermal variation on accurate MOSFET gate-length measurement”, Advanced Semiconductor Manufacturing Conference, 2009. ASMC '09. IEEE/SEMI, pp. 174-177, 2009.
    [23] Ching I Li, et al., “Superior Spike Annealing Performance in 65nm Source/Drain Extension Engineering”, Conference on Advanced Thennal Processing of Semiconductors - RTP, pp. 163-167, 2005.
    [24] R. Van Roijen, et al., “Application and control of Laser anneal at the 65 and45 nm node”, Advanced Semiconductor Manufacturing Conference, 2009. ASMC '09. IEEE/SEMI, pp. 217-219, 2009.
    [25] Somit Talwar, Los Gatos, “LASER SCANNING APPARATUS AND METHODS FOR THERMAL PROCESSING”, US6747245B2, 2004.
    [26] David M. Owen, et al., “CHARACTERIZATION OF DEFORMATION INDUCED BY MICRO-SECOND LASER ANNEAL USING CGS INTERFEROMETRY”, Conference on Advanced Thennal Processing of Semiconductors - RTP, pp. 127-133, 2008.
    [27] CAMECA, http://www.cameca.com/metrology-tools/lexes.aspx.
    [28] Nick Pearce, et al., “Production Implant Monitoring Using the Thermal-Probe 500”, Ion Implantation Technology, pp. 206-209, 1996.
    [29] Li Zhou, et al., “Use of a new thermal wave technology for ultra-shallow junction implant monitoring”, Ion Implantation Technology, Vol.1 No.1 pp. 578-581, 1998.
    [30] 羅聖全, FE-TEM010.pdf, www.materialsnet.com.tw.
    [31] http://cp.literature.agilent.com/litweb/pdf/5988-3842EN.pdf
    [32] T. Noda, et al., “Analysis of Pocket Profile Deactivation and its Impact on Vth variation for Laser Annealed Device using an Atomistic Kinetic Monte Carlo Approach”, Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 15.7.1-15.7.4, 2010.
    [33] S. H. Yeong, et al., “Understanding of Carbon/Fluorine Co-implant Effect on Boron-Doped Junction Formed during Soak Annealing”, J. Electrochem. Soc., Vol. 155 No.2, pp. H69-H75, 2008.
    [34] B.J. Pawlak, et al., “Effect of amorphization and carbon co-doping on activation and diffusion of boron in silicon”, Applied Physics Letters, Vol. 89 No.2, p. 062110, 2006.
    [35] Amitabh Jain, et al., “Advancement of CMOS Doping Technology in an External Development Framework”, Ion Implantation Technology, pp. 31-36, 2010.
    [36] V. Moroz, et al., “Optimizing boron junctions through point defect and stress engineering using carbon and germanium co-implants”, Applied Physics Letters, Vol.87 No.5, p. 051908, 2005.
    [37] T. E. Seidel, et al., “Rapid thermal annealing of BF2+implanted preamorphized silicon”, Electron Device Letters, IEEE, Vol.4 No.10, pp. 353-355, 1983.
    [38] M. C. Ozturk, et al., “Optimization of the germanium preamorphization conditions for shallow-junction formation”, Electron Devices, IEEE Transactions on, Vol.35 No.5, pp. 659-668, 1988.
    [39] Hiroshi Itokawa, et al., “Modifications of Growth of Strained Silicon and Dopant Activation in Silicon by Cryogenic Ion Implantation and Recrystallization Annealing”, Junction Technology (IWJT), 2012 12th International Workshop on, pp. 210-215, 2012.
    [40] Synopsys Sentaurus, http://www.synopsys.com/home.aspx.
    [41] 林良華, 聯華電子先進技術開發元件處, 2012.
    [42] T. Ghani, et al., “A 90nm High Volume Manufacturing Logic Technology Featuring Novel 45nm Gate Length Strained Silicon CMOS Transistors”, pp. 11.6.1-11.6.3, IEDM, 2003.
    [43] 黃昌琪, 聯華電子先進技術開發邏輯處, IC 製程概論與先進製程整合, p. 31, 2011.
    [44] C. L. Yang, et al., “Optimizing State-of-the-art 28nm Core/SRAM Device Performance By Cryo-implantation Technology”, pp. 1-2, VLSI Technology, Systems, and Applications (VLSI-TSA), 2012 International Symposium on, 2012.
    [45] C. I. Li, et al., “Control of Source and Drain Extension Phosphorus Profile by Using Carbon Co-implant”, Advanced Thermal Processing of Semiconductors, pp. 127-130, 2007.
    [46] Soon-Yeol Park, et al., “Atomistic Modeling on Carbon Co-implant with Silicon Pre-amorphization Implant Technique”, Silicon Nanoelectronics Workshop, 2008. SNW 2008. IEEE, pp. 1-2, 2008.
    [47] Lourdes Pelaz, et al., “Modeling of defect generation and dissolution in ion implanted semiconductors”, Ion Implantation Technology, pp. 176-180, 2010.
    [48] Fareen Khaja, et al., “Benefits of Damage Engineering for PMOS Junction Stability”, Ion Implantation Technology, pp. 65-68, 2010.

    無法下載圖示 校內:2023-06-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE