簡易檢索 / 詳目顯示

研究生: 林意淳
Lin, Yi-Chun
論文名稱: POM模式應用於河口水動力計算之研究
An Application of POM Model to the Calculation of Estuary Hydrodynamics
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 66
中文關鍵詞: 河口感潮河段
外文關鍵詞: POM
相關次數: 點閱:57下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用美國普林斯頓大學發展的數值模式POM (Princeton Ocean Model) 進行感潮河段的水理計算模式。此模式是屬於三維有限差分的數值模式,適合模擬水深方向物理量變化梯度很大的河口問題。在數值運算方面,分為外模式 (external mode) 和內模式 (internal mode) 兩種不同計算技巧的運用可以大量節省電腦運算時間。另者,由於在河口區存在鹽、淡水混合和鹽水入侵的問題,而POM模式亦可併入鹽度的狀態方程式,即可拿來應用到感潮河段鹽水移動的模式發展。邊界的處理方式則是採用許等人 (2002) 的二維有限元素法模式計算所需的潮位資料,再將其內插至欲計算河口外海處的格網上而獲得。本文亦選擇鹽水溪作為研究之應用對象,計算範圍包含河川及河口附近的海域,同時考慮海洋潮汐及河川流量對感潮河段的影響,完整模擬鹽水溪受感潮影響之水位變化與鹽水移動的情形。

      In this study we use the numerical POM (Princeton Ocean Model) model of the Princeton University to simulate the tidal interaction between ocean waves and the approaching YanShui river. The present three-dimensional finite difference method is found to be quite suitable for simulating the detailed estuary flow behavior, consisting of frequent changes, in the river depth, the local velocity and the pressure gradients, and the salt and fresh water mixing. The two-way simulation process, dealing with calculations of the external mode (e.g., surface elevation and vertically averaged velocity calculations) and the internal mode (updating the flow variables with time and calculating the turbulence effect) saves a lot of computer operation time. On the other hand, the physical mixing/migration process, in the estuary region, of the fresh river water and the salt water from the ocean could be successfully simulated using the POM model. In the simulation process, while at places far away from the estuary region we directly use the tidal data of Hsu et al (2002), near the estuary region we use their interpolated values, as required for a finer grid system. As a direct application, in the present study we simulate the estuary formation with the YanShui river. The computation range contains both the river and the estuary sea area; and the present numerical model successfully takes care of all the associated physical changes in the region, such as, tide formation in the sea region, the discharge of river water to the tidal section of the estuary, and the tidal influence in the sea water level change and the salt water migration to the YanShui river.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖 目 錄 VI 表 目 錄 IX 符 號 說 明 X 第一章 緒論 1 1-1研究動機與目的 1 1-2前人研究 3 1-3本文組織 6 第二章 模式介紹 7 2-1 控制方程式 7 2-2 紊流閉合模式 9 2-3 座標轉換 11 2-4 邊界條件 14 2-5 網格配置 16 2-6 穩定條件 18 2-7 模式計算流程 19 第三章 模式驗證及應用 20 3-1 模式驗證 20 3-2 模式應用 21 3-2-1 試驗條件一 21 3-2-2 試驗條件二 23 3-2-3 試驗條件三 25 第四章 鹽水溪實例計算 31 4-1 地理位置 31 4-2 水文氣象 32 4-3 河道地形 32 4-4 河川流量分析 32 4-5海潮流之驗證 33 4-6 模式輸入條件及邊界設定方式 38 4-7 河川感潮分析 39 第五章 結論與建議 52 5-1 結論 52 5-2 建議 52 參考文獻 53 附錄 A 包氏近似(Boussinesq approximation) 57 附錄 B 控制方程式座標轉換推導 60

    1.Aikman, F., G. L. Mellor and D. B. Rao (1995), “A quasi-operational
    forecast/nowcast assimilation system for the U.S. east coast.” Proc., AMS
    Conf. on Coastal Oceanic and Atmospheric Prediction.
    2.Blumberg, A.F., and G.L. Mellor (1983), “Diagnostic and prognostic numerical
    circulation studies of the South Atlantic Bight.” J. Geophys. Res., 88, pp.
    4579-4592.
    3.Blumberg, A.F., and G.L. Mellor (1987), “A description of a three-dimensional
    coastal ocean circulation model.” in Three-Dimensional Coastal Ocean Models,
    American Geophysical Union, Washington, D.C.,. Vol. 4, edited by N.Heaps, pp.
    208.
    4.Bowden, K. F. and P. Hamilton (1975), “Some experiments with a numerical model
    of circulation and mixing in a tidal estuary.” Estuarine and Coastal Marine
    Science, 3(3), pp.281-301.
    5.Elliott, A. J. (1978), “Observations of the meteorological induced circulation in the Potomac Estuary.” Estuarine and Coastal Marine Science, 6, pp.285-299.
    6.Ezer, T. and G. L. Mellor (1991), “A Gulf Stream model and an altimetry
    assimilation scheme.” J. Geophys. Res., 96, pp.8779-8795.
    7.Ezer, T. and G. L. Mellor (1997), “Simulations of the Atlantic Ocean with a
    free surface sigma coordinate ocean model.” J. Geophys. Res., 102,
    pp.15647–15657.
    8.Ezer, T. (1999), “Decadal variabilities of the upper layers of the subtropical
    North Atlantic: An ocean model study.” J. Phys. Oceanogr., 29(12),
    pp.3111-3124.
    9.Ezer, T. and G. L. Mellor (2000), “Sensitivity studies with the North Atlantic
    sigma coordinate Princeton Ocean Model.” Dynamics of Atmospheres and Oceans,
    32, pp.155–208.
    10.Hansen, D. V. and M. Rattray (1965), Jr., “Gravitational circulation in
    straits and estuaries.” J. Mar. Res., 23 ,pp.104-122.
    11.Hansen, D. V. and M. Rattray, Jr., (1966), “New dimensions in estuarine
    classification.” Limnol. and Oceanogr.,11,pp.319-326.
    12.Lardner, W. and Cekirge, H. M. (1988), “A new algorithm for three-
    dimensional tidal and storm surge computation” Appl. Math. Modelling, Vol.12,
    pp.471-481.
    13.Leendertse, J. J.(1967), “Aspects of a computational model for long-period
    water-wave propagation.” RM-5294-PR, Rand Corp. Santa Monica, California.
    14.Matsumoto, K., M. Ooe. and T. Sato (1995), “Ocean tide model obtained from
    TOPEX / POSEIDON altimetry data” J. Oceanorgraphy, 56, pp.561-581.
    15.Matsumoto, K., T. Takanezawa and M. Ooe (2000), “Ocean tide model developed
    by assimilating TOPEX / POSEIDON altimetry data into hydrodynamical model: A
    Global and a Regional Model around Japan” J. Oceanorgraphy, 56, pp.567-581.
    16.Mellor, G.L., and T. Yamada (1982), “Development of a turbulence closure
    model for geophysical fluid problems” Rev. Geophys. Space Phys., 20,
    pp.851-875.
    17.Mellor, GL., S. Hakkinen, T. Ezer and R. Patchen (2002), “A generalization of
    a sigma coordinate ocean model and an intercomparison of model vertical
    grids” In Pinardl, N., Wood, J.D.(Eds), Ocean Forecastings: Conceptual Basis
    and Applications, Springer, Berlin, p55-72.
    18.Nihoul, J. C. J. (1977), “Three-dimensional model of tides and storm surges
    in a shallow well-mixed continental sea.” Dyn. Atmos. Oceans, 2, pp.29-47.
    19.Oey, L.-Y., G.L. Mellor, and R.I. Hires (1985a), “A three-dimensional
    simulation of the Hudson-Raritan estuary” Part I: Description of the model
    and model simulations, J. Phys. Oceanogr., 15, pp.1676-1692.
    20.Oey, L.-Y., G.L. Mellor, and R.I. Hires (1985b), “A three-dimensional
    simulation of the Hudson-Raritan estuary” Part II: Comparison with
    observation, J. Phys. Oceanogr., 15, pp.1693-1709.
    21.Oey, L.-Y., G. L. Mellor, and R.I. Hires (1985c), “A three-dimensional
    simulation of the Hudson-Raritan estuary” Part III: Salt flux analyses, J.
    Phys. Oceanogr., 15, pp.1711-1720.
    22.Park, K. and A. Y. Kuo (1992), “A vertical two dimensional model of estuarine
    hydrodynamics and water quality” Special report in applied marine.
    23.Phillips, N. A. (1957), “A coordinate system having some special advantages
    for numerical forecasting” J. Meteorol., 14, pp.184-185.
    24.Pritchard,D.W. (1952), “Estuarine hydrography” In:Advances in Geophysics,
    Vol. 1,Academic Press Inc. New York, NY.,pp.243-280.
    25.Pritchard,D.W. (1954), “A study of the slat blance in a coast plain estuary”
    J. of Marine Research, 13(1), pp.133-144.
    26.Pritchard,D.W. (1956), “The dynamic structure of a coastal plain estuary” J.
    of Marine Research, 15(1), pp.33-42.
    27.Schwiderski, E.W. (1980), “On Charting Global Ocean Tides” Geophys. Space
    phys, 18, pp.243-265.
    28.Smagorinsky, J., S. Manabe, and J.L., Holloway (1965), “Numerical results
    from a nine-level general circulation model of the atmosphere” Mon. Weather
    Rev., 93, pp.727-768.
    29.Stelling, G. S. , A. K. Wiersma and J,B.T.M. Willemse (1986), “Practical
    aspects of accurate tidal computations” J. of Hydr. Eng., ASCE, Vol. 112 No.
    9 september.
    30.Zavatarelli, M., and G. L. Mellor (1995), “A numerical study of the
    Mediterranean Sea Circulation” J. Phys. Oceanogr., 25, pp.1384-1414.
    31.吳仁友 (1997),「擬似三維海岸水動力計算模式之發展」,國立台灣大學土木工程研究
    所碩士論文。
    32.水利處第六河川局 (1998),「鹽水溪治理規劃報告」,九月。
    33.林政偉 (1999),「感潮河段之計算研究」,國立台灣大學土木工程研究所碩士論文。
    34.莊文傑 (2000),「台灣海峽潮波協振盪之研究」,國立台灣大學造船及海洋工程學研究
    所博士論文。
    35.黃良雄、吳仁友、曾鈞敏 (2001),「感潮河口之水理計算―以鹽水溪為例」,中國土木
    水利工程學刊,第十三卷,第三期,pp.533-541
    36.張憲國、黃金維 (2001),「以NAO99b潮汐模式預測台灣西岸潮汐之評估」,第24屆海洋
    工程研討會論文集,pp.105-111。
    37.葉姍霈 (2002),「台灣海域高解析度潮汐模式之建立—敏感度試驗」,國立成功大學水
    利暨海洋工程學研究所碩士論文。
    38.許泰文等人 (2002),「建立波潮流與海岸線變遷模式」,經濟部水利署水利規劃試驗所
    報告。

    下載圖示 校內:2005-07-15公開
    校外:2005-07-15公開
    QR CODE