| 研究生: |
林意淳 Lin, Yi-Chun |
|---|---|
| 論文名稱: |
POM模式應用於河口水動力計算之研究 An Application of POM Model to the Calculation of Estuary Hydrodynamics |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 河口 、感潮河段 |
| 外文關鍵詞: | POM |
| 相關次數: | 點閱:57 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用美國普林斯頓大學發展的數值模式POM (Princeton Ocean Model) 進行感潮河段的水理計算模式。此模式是屬於三維有限差分的數值模式,適合模擬水深方向物理量變化梯度很大的河口問題。在數值運算方面,分為外模式 (external mode) 和內模式 (internal mode) 兩種不同計算技巧的運用可以大量節省電腦運算時間。另者,由於在河口區存在鹽、淡水混合和鹽水入侵的問題,而POM模式亦可併入鹽度的狀態方程式,即可拿來應用到感潮河段鹽水移動的模式發展。邊界的處理方式則是採用許等人 (2002) 的二維有限元素法模式計算所需的潮位資料,再將其內插至欲計算河口外海處的格網上而獲得。本文亦選擇鹽水溪作為研究之應用對象,計算範圍包含河川及河口附近的海域,同時考慮海洋潮汐及河川流量對感潮河段的影響,完整模擬鹽水溪受感潮影響之水位變化與鹽水移動的情形。
In this study we use the numerical POM (Princeton Ocean Model) model of the Princeton University to simulate the tidal interaction between ocean waves and the approaching YanShui river. The present three-dimensional finite difference method is found to be quite suitable for simulating the detailed estuary flow behavior, consisting of frequent changes, in the river depth, the local velocity and the pressure gradients, and the salt and fresh water mixing. The two-way simulation process, dealing with calculations of the external mode (e.g., surface elevation and vertically averaged velocity calculations) and the internal mode (updating the flow variables with time and calculating the turbulence effect) saves a lot of computer operation time. On the other hand, the physical mixing/migration process, in the estuary region, of the fresh river water and the salt water from the ocean could be successfully simulated using the POM model. In the simulation process, while at places far away from the estuary region we directly use the tidal data of Hsu et al (2002), near the estuary region we use their interpolated values, as required for a finer grid system. As a direct application, in the present study we simulate the estuary formation with the YanShui river. The computation range contains both the river and the estuary sea area; and the present numerical model successfully takes care of all the associated physical changes in the region, such as, tide formation in the sea region, the discharge of river water to the tidal section of the estuary, and the tidal influence in the sea water level change and the salt water migration to the YanShui river.
1.Aikman, F., G. L. Mellor and D. B. Rao (1995), “A quasi-operational
forecast/nowcast assimilation system for the U.S. east coast.” Proc., AMS
Conf. on Coastal Oceanic and Atmospheric Prediction.
2.Blumberg, A.F., and G.L. Mellor (1983), “Diagnostic and prognostic numerical
circulation studies of the South Atlantic Bight.” J. Geophys. Res., 88, pp.
4579-4592.
3.Blumberg, A.F., and G.L. Mellor (1987), “A description of a three-dimensional
coastal ocean circulation model.” in Three-Dimensional Coastal Ocean Models,
American Geophysical Union, Washington, D.C.,. Vol. 4, edited by N.Heaps, pp.
208.
4.Bowden, K. F. and P. Hamilton (1975), “Some experiments with a numerical model
of circulation and mixing in a tidal estuary.” Estuarine and Coastal Marine
Science, 3(3), pp.281-301.
5.Elliott, A. J. (1978), “Observations of the meteorological induced circulation in the Potomac Estuary.” Estuarine and Coastal Marine Science, 6, pp.285-299.
6.Ezer, T. and G. L. Mellor (1991), “A Gulf Stream model and an altimetry
assimilation scheme.” J. Geophys. Res., 96, pp.8779-8795.
7.Ezer, T. and G. L. Mellor (1997), “Simulations of the Atlantic Ocean with a
free surface sigma coordinate ocean model.” J. Geophys. Res., 102,
pp.15647–15657.
8.Ezer, T. (1999), “Decadal variabilities of the upper layers of the subtropical
North Atlantic: An ocean model study.” J. Phys. Oceanogr., 29(12),
pp.3111-3124.
9.Ezer, T. and G. L. Mellor (2000), “Sensitivity studies with the North Atlantic
sigma coordinate Princeton Ocean Model.” Dynamics of Atmospheres and Oceans,
32, pp.155–208.
10.Hansen, D. V. and M. Rattray (1965), Jr., “Gravitational circulation in
straits and estuaries.” J. Mar. Res., 23 ,pp.104-122.
11.Hansen, D. V. and M. Rattray, Jr., (1966), “New dimensions in estuarine
classification.” Limnol. and Oceanogr.,11,pp.319-326.
12.Lardner, W. and Cekirge, H. M. (1988), “A new algorithm for three-
dimensional tidal and storm surge computation” Appl. Math. Modelling, Vol.12,
pp.471-481.
13.Leendertse, J. J.(1967), “Aspects of a computational model for long-period
water-wave propagation.” RM-5294-PR, Rand Corp. Santa Monica, California.
14.Matsumoto, K., M. Ooe. and T. Sato (1995), “Ocean tide model obtained from
TOPEX / POSEIDON altimetry data” J. Oceanorgraphy, 56, pp.561-581.
15.Matsumoto, K., T. Takanezawa and M. Ooe (2000), “Ocean tide model developed
by assimilating TOPEX / POSEIDON altimetry data into hydrodynamical model: A
Global and a Regional Model around Japan” J. Oceanorgraphy, 56, pp.567-581.
16.Mellor, G.L., and T. Yamada (1982), “Development of a turbulence closure
model for geophysical fluid problems” Rev. Geophys. Space Phys., 20,
pp.851-875.
17.Mellor, GL., S. Hakkinen, T. Ezer and R. Patchen (2002), “A generalization of
a sigma coordinate ocean model and an intercomparison of model vertical
grids” In Pinardl, N., Wood, J.D.(Eds), Ocean Forecastings: Conceptual Basis
and Applications, Springer, Berlin, p55-72.
18.Nihoul, J. C. J. (1977), “Three-dimensional model of tides and storm surges
in a shallow well-mixed continental sea.” Dyn. Atmos. Oceans, 2, pp.29-47.
19.Oey, L.-Y., G.L. Mellor, and R.I. Hires (1985a), “A three-dimensional
simulation of the Hudson-Raritan estuary” Part I: Description of the model
and model simulations, J. Phys. Oceanogr., 15, pp.1676-1692.
20.Oey, L.-Y., G.L. Mellor, and R.I. Hires (1985b), “A three-dimensional
simulation of the Hudson-Raritan estuary” Part II: Comparison with
observation, J. Phys. Oceanogr., 15, pp.1693-1709.
21.Oey, L.-Y., G. L. Mellor, and R.I. Hires (1985c), “A three-dimensional
simulation of the Hudson-Raritan estuary” Part III: Salt flux analyses, J.
Phys. Oceanogr., 15, pp.1711-1720.
22.Park, K. and A. Y. Kuo (1992), “A vertical two dimensional model of estuarine
hydrodynamics and water quality” Special report in applied marine.
23.Phillips, N. A. (1957), “A coordinate system having some special advantages
for numerical forecasting” J. Meteorol., 14, pp.184-185.
24.Pritchard,D.W. (1952), “Estuarine hydrography” In:Advances in Geophysics,
Vol. 1,Academic Press Inc. New York, NY.,pp.243-280.
25.Pritchard,D.W. (1954), “A study of the slat blance in a coast plain estuary”
J. of Marine Research, 13(1), pp.133-144.
26.Pritchard,D.W. (1956), “The dynamic structure of a coastal plain estuary” J.
of Marine Research, 15(1), pp.33-42.
27.Schwiderski, E.W. (1980), “On Charting Global Ocean Tides” Geophys. Space
phys, 18, pp.243-265.
28.Smagorinsky, J., S. Manabe, and J.L., Holloway (1965), “Numerical results
from a nine-level general circulation model of the atmosphere” Mon. Weather
Rev., 93, pp.727-768.
29.Stelling, G. S. , A. K. Wiersma and J,B.T.M. Willemse (1986), “Practical
aspects of accurate tidal computations” J. of Hydr. Eng., ASCE, Vol. 112 No.
9 september.
30.Zavatarelli, M., and G. L. Mellor (1995), “A numerical study of the
Mediterranean Sea Circulation” J. Phys. Oceanogr., 25, pp.1384-1414.
31.吳仁友 (1997),「擬似三維海岸水動力計算模式之發展」,國立台灣大學土木工程研究
所碩士論文。
32.水利處第六河川局 (1998),「鹽水溪治理規劃報告」,九月。
33.林政偉 (1999),「感潮河段之計算研究」,國立台灣大學土木工程研究所碩士論文。
34.莊文傑 (2000),「台灣海峽潮波協振盪之研究」,國立台灣大學造船及海洋工程學研究
所博士論文。
35.黃良雄、吳仁友、曾鈞敏 (2001),「感潮河口之水理計算―以鹽水溪為例」,中國土木
水利工程學刊,第十三卷,第三期,pp.533-541
36.張憲國、黃金維 (2001),「以NAO99b潮汐模式預測台灣西岸潮汐之評估」,第24屆海洋
工程研討會論文集,pp.105-111。
37.葉姍霈 (2002),「台灣海域高解析度潮汐模式之建立—敏感度試驗」,國立成功大學水
利暨海洋工程學研究所碩士論文。
38.許泰文等人 (2002),「建立波潮流與海岸線變遷模式」,經濟部水利署水利規劃試驗所
報告。