簡易檢索 / 詳目顯示

研究生: 徐榮昌
Hsu, Jung-Chang
論文名稱: 應用Adomian修正分解法於樑自由振動之研究
Application of the Adomian Modified Decomposition Method to the Free Vibrations of Beams
指導教授: 陳朝光
Chen, Chao'-Kuang
賴新一
Lai, Hsin-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 200
中文關鍵詞: Timoshenko樑Euler-Bernoulli樑自由振動Adomian分解法(ADM)Adomian修正分解法(AMDM)
外文關鍵詞: Adomian modified decomposition method (AMDM), Euler-Bernoulli beam, Adomian decomposition method (ADM), Free vibration, Timoshenko beam
相關次數: 點閱:130下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用Adomian分解法與Adomian修正分解法來求解特徵值問題以及處理樑之自由振動問題。
    首先利用Adomian分解法(ADM)求出Sturm-Liouville問題之特徵值與正規化特徵函數,將統御微分方程式轉換成遞迴型式之代數方程式,邊界條件轉換成簡單的代數型式之頻率方程式,藉由符號運算之使用以及在頻率方程式上做簡單代數計算,可得到第 個特徵值與第 個特徵函數之閉合級數解;其次,探討均勻Euler-Bernoulli樑在不同邊界條件下之自由振動問題。之後,再利用Adomian修正分解法(AMDM)分析置於彈性基座上、承受軸向力作用之非均勻Euler-Bernoulli樑,此樑兩端彈性拘束且附著具有轉動慣性與偏心之端點質量;藉由求得之某些數值結果來說明物理參數對動態系統之自然頻率的影響。最後,探討非均勻Timoshenko樑之自由振動問題。
    本文中所得之計算結果與文獻中解析結果及數值結果是相當吻合的;此結果表示本文之分析是精確的,而且提供一個比其它分析方法更簡單、更直接、更具有統一性、系統性之方法。

    The paper solves the eigenvalue problems and deals with the free vibration problems by using the Adomian decomposition method (ADM) and Adomian modified decomposition method (AMDM).
    First, using the ADM, the eigenvalues and normalized eigenfunctions for the Strum-Liouville eigenvalue problem are solved, and the governing differential equation becomes a recursive algebraic equation and boundary conditions become simple algebraic frequency equations which are suitable for symbolic computation. Moreover, after some simple algebraic operations on these frequency equations any th natural frequency, the closed form series solution of any th mode shape can be obtained. Second, the free vibration problems of Euler-Bernoulli beam under various supporting conditions are discussed. Third, using the AMDM, the free vibration problems of an elastically restrained non-uniform Euler-Bernoulli beam with tip mass of rotatory inertia and eccentricity resting on an elastic foundation and subjected to an axial load are proposed. Some numerical results are given to illustrate the influence of the physical parameters on the natural frequencies of the dynamic system. Finally, this paper deals with free vibration problems of non-uniform Timoshenko beams.
    In this paper, the computed results agree well with those analytical and numerical results given in the literature. These results indicate that the present analysis is accurate, and provides a unified and systematic procedure which is simple and more straightforward than the other analyses.

    中文摘要................................................. I 英文摘要..................................................... III 誌謝..................................................... V 目錄................................................... VII 表目錄.................................................. XI 圖目錄.................................................. XV 符號說明............................................... XXI 第一章 緒論.............................................. 1 1-1 研究目的及背景....................................... 1 1-2 文獻回顧............................................. 2 1-3 本文架構............................................. 5 第二章 Adomian分解法在特徵值問題之應用................... 7 2-1 Adomian分解法....................................... 8 2-2 Adomian分解法求解Sturm-Liouville問題............... 10 2-3 實例求解與結果...................................... 15 2-4 結論................................................ 22 第三章 均勻Euler-Bernoulli樑之分析...................... 35 3-1 統御方程式與邊界條件................................ 35 3-2 Adomian分解法求解樑之振動問題...................... 37 3-2-1 左端 為固定端................................. 41 3-2-2 左端 為簡支端................................. 42 3-2-3 左端 為自由端................................. 44 3-3 數值結果與討論...................................... 45 3-4結論................................................. 49 第四章 非均勻Euler-Bernoulli樑之分析.................... 75 4-1 Adomian修正分解法.................................. 75 4-2 統御方程式與邊界條件................................ 77 4-3 Adomian修正分解法求解非均勻樑之振動問題............ 80 4-3-1 非均勻楔形Euler-Bernoulli樑................... 84 4-3-2 非均勻錐形Euler-Bernoulli樑................... 86 4-3-3 均勻Euler-Bernoulli樑......................... 87 4-4 數值結果與討論...................................... 88 4-5結論................................................. 92 第五章 置於彈性基座上且承受軸向力之非均勻Euler- Bernoulli 樑的分析........................................ 109 5-1 統御方程式與邊界條件 ............................. 109 5-2 Adomian修正分解法求解非均勻樑之振動問題........... 112 5-2-1 均勻Euler-Bernoulli樑........................ 116 5-2-2 非均勻楔形Euler-Bernoulli樑.................. 117 5-2-3 非均勻錐形Euler-Bernoulli樑.................. 117 5-3 數值結果與討論..................................... 118 5-4結論................................................ 125 第六章 Timoshenko樑的分析.............................. 143 6-1 AMDM求解耦合微分方程系統.......................... 143 6-2 統御方程式與邊界條件............................... 146 6-3 AMDM求解Timoshenko樑之振動問題.................... 149 6-3-1 均勻Timoshenko樑............................. 153 6-3-2 非均勻楔形Timoshenko樑....................... 154 6-3-3 非均勻錐形Timoshenko樑....................... 155 6-4 數值結果與討論..................................... 156 6-5結論................................................ 161 第七章 結論與建議...................................... 179 7-1 綜合結論.......................................... 179 7-2未來研究方向之建議.................................. 181 參考文獻............................................... 183 附錄A.................................................. 195 附錄B.................................................. 197 自述................................................... 199

    1.Abbas, B. A. H., Vibrations of Timoshenko beams with elastically restrained ends, Journal of Sound and Vibration 97(4), 541-548, 1984.
    2.Abramovich, H., and Hamburger, O., Vibration of a uniform cantilever Timoshenko beam with translational and rotational springs and with a tip mass, Journal of Sound and Vibration 154(1), 67-80, 1992.
    3.Abramovich, H., and Hamburger, O., Vibration of a cantilever Timoshenko beam with a tip mass, Journal of Sound and Vibration 148(1), 162-170, 1991.
    4.Abramovich, H., and Elishakoff, I., Influence of shear deformation and rotary inertia on vibration frequencies via Love’s equations, Journal of Sound and Vibration 137(3), 516-522, 1990.
    5.Abrate, S., Vibration of non-uniform rods and beams, Journal of Sound and Vibration 185(4), 703-716, 1995.
    6.Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, 1994.
    7.Adomian, G., and Rach, R., Modified decomposition solution of nonlinear partial differential equations, Computers and Mathematics with Applications 23, 17-23, 1992.
    8.Adomian, G., and Rach, R., Nonlinear transformation of series, Applied Mathematics Letters 4, 69-71, 1991.
    9.Auciello, N. M., and Ercolano, A., A general solution for dynamic response of axially loaded non-uniform Timoshenko beams, International Journal of Solids and Structures 41, 4861-4874, 2004.
    10.Auciello, N. M., Free vibration of a restrained shear-deformable tapered beam with a tip mass at its free end, Journal of Sound and Vibration 237(3), 542-549, 2000.
    11.Auciello, N. M., Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotatory inertia and eccentricity, Journal of Sound and Vibration 194(1), 25-34, 1996.
    12.Auciello, N. M., A comment on “A note on vibrating tapered beams”, Journal of Sound and Vibration 187(4), 724-726, 1995.
    13.Bokaian, A., Natural frequencies of beams under tensile axial loads, Journal of Sound and Vibration 142(3), 481-498, 1990.
    14.Bruch, J. C., and Mitchell, T. P., Vibrations of a mass-loaded clamped -free Timoshenko beam, Journal of Sound and Vibration 114(2), 341-345, 1987.
    15.Chang, T. P., Forced vibration of a mass-loaded beam with a heavy tip body, Journal of Sound and Vibration 164(3), 471-484, 1993.
    16.Chen, C. K., and Ho, S. H., Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform, International Journal of Mechanical Sciences 41, 1339-1356, 1999.
    17.Chen, C. K., and Ho, S. H., Free vibration analysis of non-uniform Timoshenko beams using differential transform, CSME Transactions 22, 231-250, 1998.
    18.Chen, C. K., and Ho, S. H., Application of differential transformation to eigenvalue problem, Applied Mathematics and Computation 79, 173-188, 1996.
    19.Chen, C. N., Vibration of prismatic beam on an elastic foundation by the differential quadrature element method, Computers & Structures 77, 1-9, 2000.
    20.Chiu, C. H., and Chen, C. K., Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity, Acta Mechanica 157, 147-158, 2002.
    21.Chiu, C. H., and Chen, C. K., A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass transfer 45(10), 2067-2075, 2002.
    22.De Rosa, M. A., and Auciello, N. M., Free Vibrations of tapered beams with flexible ends, Computers & Structures 60(2), 197-202, 1996.
    23.Dimarogonas, A. D., Vibration for Engineers, 2nd ed., Prentice-Hall, Inc., 1996.
    24.Eisenberger, M., Dynamic stiffness matrix for variable cross-section Timoshenko beams, Communications in Numerical Methods in Engineering 11, 507-513, 1995.
    25.Farghaly, S. H., On Comments on ‘Vibrations of a mass-loaded clamped- free Timoshenko beam’, Journal of Sound and Vibration 164(3), 549-552, 1993.
    26.Ferreira, A. J. M., and Fasshauer, G. E., Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method, Computer methods in Applied Mechanics and Engineering 196, 134-146, 2006.
    27.Goel, R. P., Transverse vibrations of tapered beams, Journal of Sound and Vibration 47(1), 1-7, 1976.
    28.Grant, D. A., The effect of rotary inertia and shear deformation on the frequency and normal mode equations of uniform beams carrying a concentrated mass, Journal of Sound and Vibration 57(3), 357-365, 1978.
    29.Grossi, R. O., Del, B., and Arenas, V., A variational approach to the vibration of tapered beams with elastically restrained ends, Journal of Sound and Vibration 195(3), 507-511, 1996.
    30.Grossi, R. O., Aranda, A., and Bhat, R. B., Vibration of tapered beams with one end spring hinged and the other end with tip mass, Journal of Sound and Vibration 160(1), 175-178, 1993.
    31.Grossi, R. O., and Bhat, R. B., A note on the vibrating tapered beams, Journal of Sound and Vibration 147(1), 174-178, 1991.
    32.Gutierrez, R. H., Laura, P. A. A., and Rossi, R. E., Fundamental frequency of vibration of a Timoshenko beam of non uniform thickness, Journal of Sound and Vibration 145(2), 341-344, 1991.
    33.Hildebrand, F. B., Advanced Calculus for Applications, 2nd ed., Prentice -Hall, Inc., 1976.
    34.Ho, S. H., and Chen, C. K., Free vibration analysis of non-homogeneous rectangular membranes using a hybrid method, Journal of Sound and Vibration 233(3), 547-555, 2000.
    35.Ho, S. H., and Chen, C. K., Analysis of general elastically restrained non-uniform beams using differential transform, Applied Mathematical Modeling 22, 219-234, 1998.
    36.Hosseini, M. M., and Nasabzadeh, H., On the convergence of Adomian decomposition method, Applied Mathematics and Computation 182, 536 -543, 2006.
    37.Huang, T. C., The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions, Transactions of the ASME: Journal of Applied Mechanics 28, 579-584, 1961.
    38.Karami, G., Malekzadeh, P., and Shahpari, S. A., A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions, Engineering Structures 25, 1169-1178, 2003.
    39.Kim, H. K., and Kim, M. S., Vibration of beams with generally restrained boundary conditions using Fourier series, Journal of Sound and Vibration 245 (5), 771-784, 2001.
    40.Kuang, J. H., and Chen, C. J., Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators, Mathematical and computer modeling 41, 1479-1491, 2005.
    41.Lau, J. H., Vibration frequencies for a non-uniform beam with end mass, Journal of Sound and Vibration 97(3), 513-521 1984.
    42.Lau, J. H., Vibration frequencies of tapered bars with end mass, Transactions of the ASME: Journal of the Applied Mechanics 51, 179-181, 1984.
    43.Laura, P. A. A., De Greco, B. V., Utjes, J., and Carnicer, R., Numerical experiments on free and forced vibrations of beams of non-uniform cross section, Journal of Sound and Vibration 120, 587-596, 1988.
    44.Laura, P. A. A., and Gutierrez, R. H., Vibrations of a elastically restrained cantilever beam of varying cross section with tip mass of finite length, Journal of Sound and Vibration 108, 123-131, 1986.
    45.Laura, P. A. A., and Cortinez, V. H., Transverse vibrations of a cantilever beam carrying a concentrated mass at its free end and subjected to a variable axial force, Journal of Sound and Vibration 103(4), 596-599, 1985.
    46.Laura, P. A. A., Pombo, J. L., and Susemihl, E. A., A note on the vibrations of a clamped-free beam with a mass at the free end, Journal of Sound and Vibration 37(2), 161-168, 1974.
    47.Lee, J., and Schultz, W. W., Eigenvalue analysis of Timoshenko beams and axisymmetric mindlin plates by the pseudospectral method, Journal of Sound and Vibration 269, 609-621, 2004.
    48.Lee, S. Y., and Lin, S. M., Vibrations of elastically restrained non -uniform Timoshenko beams, Journal of Sound and Vibration 183(3), 403-415, 1995.
    49.Lee, S. Y., and Kuo, Y. H., Exact solutions for the analysis of general elastically restrained non-uniform beams, Transactions of the ASME: Journal of the Applied Mechanics 59, s205-s212, 1992.
    50.Lee, T. W., Vibration frequencies for a uniform beam with one end spring-hinged and carrying a mass at the other end, Transactions of the ASME: Journal of the Applied Mechanics 40, 813-815, 1973.
    51.Liu, W. H., and Huang, C. C., Vibrations of a constrained beam carrying a heavy tip body, Journal of Sound and Vibration 123(1), 15-29, 1988.
    52.Mabie, H. H., and Rogers, C. B., Transverse vibrations of double-tapered cantilever beams with end support and with end mass, Journal of the Acoustical Society of America 55, 986-991, 1974.
    53.Mabie, H. H., and Rogers, C. B., Transverse vibrations of tapered cantilever beams with end supports, Journal of the Acoustical Society of America 44 (4), 1739-1741, 1968.
    54.Matsuda, H., Morita, C., and Sakiyama, T., A method for vibration analysis of a tapered Timoshenko beam with constraint at any points and carrying a heavy tip body, Journal of Sound and Vibration 158(2), 331-339, 1992.
    55.Maurizi, M. J., Rossi, R. E., and Belles, P. M., Free vibrations of uniform Timoshenko beams with ends elastically restrained against rotation and translation, Journal of Sound and Vibration 141(2), 359-362, 1990.
    56.Maurizi, M., Belles, J., and Rosales. P., M., A note on free vibrations of a constrained cantilever beam with a tip mass of finite length, Journal of Sound and Vibration 138(1), 170-172, 1990.
    57.Meirovitch, L., Fundamentals of Vibrations, McGraw-Hall, International Edition, 2001.
    58.Naguleswaran, S., Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force, Journal of Sound and Vibration 275, 47-57, 2004.
    59.Naguleswaran, S., comments on “Vibration of non-uniform rods and beams”, Journal of Sound and Vibration 195(2), 331-337, 1996.
    60.Naguleswaran, S., A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams, Journal of Sound and Vibration 172(3), 289-304 1994.
    61.Naguleswaran, S., Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth, Journal of Sound and Vibration 153(3), 509-522, 1992.
    62.Naguleswaran, S., Vibration of a vertical cantilever with and without axial freedom at clamped end, Journal of Sound and Vibration 146(2), 191-198, 1991.
    63.Nallim, L. G., and Grossi, R. O., A general algorithm for the study of the dynamical behavior of beams, Applied Acoustics 57, 345-356, 1999.
    64.Posiadala, B., Free vibrations of uniform Timoshenko beams with attachments, Journal of Sound and Vibration 204(2), 359-369, 1997.
    65.Rao, S. S., Mechanical Vibration, SI ed., Prentice-Hall, Inc., 2005.
    66.Register, A. H., A note on the vibrations of generally restrained, end- loaded beams, Journal of Sound and Vibration 172 (4), 561-571, 1994.
    67.Rossi, R. E., and Laura, P. A. A., Numerical experiments on vibrating linearly taped Timoshenko beams, Journal of Sound and Vibration 168(1), 179-183, 1993.
    68.Takahashi, K., Eigenvalue problem of a beam with a mass and spring at the end subjected to an axial force, Journal of Sound and Vibration 71(3), 453-457, 1980.
    69.Thambiratnam, D., and Zhuge, Y., Free vibration analysis of beams on elastic foundation, Computers & Structures 60(6), 971-980, 1996.
    70.Thomson, W. T., Theory of Vibration with Applications, 2nd ed., 1981.
    71.To, C. W. S., Vibration of a cantilever beam with a base excitation and tip mass, Journal of Sound and Vibration 83(4), 445-460, 1982.
    72.Tong, X., Tabarrok, B., and Yeh, K. Y., Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section, Journal of Sound and Vibration 186(5), 821-835, 1995.
    73.Wazwaz, A. M., and El-Sayed, S. M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation 122, 393-405, 2001.
    74.Wazwaz, A. M., A new algorithm for calculating Adomian polynomials for nonlinear polynomials, Applied Mathematics and Computation 111, 53-69, 2000.
    75.Wazwaz, A. M., The modified decomposition method and Pade approximants for solving the Thomas-Fermi equation, Applied Mathematics and Computation 105, 11-29, 1999.
    76.Wazwaz, A. M., A reliable modification of Adomian’s decomposition method, Applied Mathematics and Computation 102, 77-86, 1999.
    77.William, E. B., and Richard C. D., Elementary Differential Equations and Boundary Value Problems, 5th ed., John Wiley & Sons, Inc., p. 589, 1992.
    78.Wang, J. T. S., and Lin, C. C., Dynamic analysis of generally supported beams using Fourier series, Journal of Sound and Vibration 196 (3), 285-293, 1996.
    79.Weaver, W., Timoshenko, S. P., and Young, D. H., Vibration Problems in Engineering, 5th ed., John Wiley & Sons, Inc., 1990.
    80.Wolfram, S., The Mathematica book, 4th ed., Wolfram Media, Cambridge University Press, 1999.
    81.Wolfram, S., Mathematica: a system for doing mathematics by computer, 2nd ed., Addison-Wesley, Redwood City, Calif., 1991.
    82.Yeih, W., Chen, J. T., and Chang, C. M., Applications of dual MRM for determining the natural frequencies and natural modes of an Euler-Bernoulli beam using the singular value decomposition method, Engineering Analysis with Boundary Elements 23, 339-360,1999.

    下載圖示 校內:2010-01-23公開
    校外:2010-01-23公開
    QR CODE