簡易檢索 / 詳目顯示

研究生: 王弘毅
Wang, Hung-Yi
論文名稱: 應用弧長法與移動最小二乘法於圓錐體薄殼大變形分析
Large deformation analysis of the conical shells by the arc-length and moving least squares methods
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 61
中文關鍵詞: 弧長法移動最小二乘法大變形理論
外文關鍵詞: First-order shear deformation theory, Large deformation of thin shells, Moving least square method
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文內容以一階剪切變形理論以及虛功原理推導出適合分析圓錐薄殼之大變形理論,利用弧長法進行線性化再以移動最小二乘法配合擬Hermite型式近似,處理本構關係式以及平衡方程式。將平衡方程式依弧長法處理,將其平衡方程式線性化,並迭代計算使其接近其變形後的位置,進而求得其薄殼發生變形後的軸力、剪力以及彎矩。本文的數值範例分析了封閉圓錐殼討論其承受壓力的挫屈行為,以及承受內壓力膨脹時之非線性行為,還有開放式圓錐殼之突跳(snap through)行為。

    In this thesis, the nonlinear theory for the large deformation of conical shells is investigated under the assumption of the first order shear deformation using the principle of virtual work. The functions of constitutive equations and equilibrium equations are linearized by the arc-length method and analyzed using the moving least squares approximation in the quasi-Hermite type formulation. Then, the deformed configurations and the associated forces will be obtained after the iterations. The numerical examples of the nonlinear behavior of conical shells are discussed in the study, and they includes the buckling behavior of conical shells, nonlinear behavior of the shell under internal pressure, and the snap-through behavior of the opened conical shell.

    目錄 摘要 I 目錄 VIII 圖目錄 X 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究方法 6 1.4 本文架構 7 第二章 圓錐殼大變形理論 8 2.1 圓錐殼一階剪力假設下大變形 8 第三章 求解非線性方程式之數值迭代法 12 3.1 弧長法迭代式 12 3.2 板殼迭代修正量計算方程式 16 3.3 迭代修正計算 21 第四章 移動最小二乘法理論推導 22 4.1 移動最小二乘法 22 4.2 擬-Hermite 型式近似 26 4.3 鄰近點與權重函數之選取 29 第五章 數值算例 31 5.1 開放式圓錐薄殼淺殼彎曲成另一圓錐 31 5.1.1 理論解 31 5.1.2 數值分析 34 5.2 圓錐薄殼之挫屈行為 35 5.2.1 上下端鉸支承之圓錐薄殼僅承受圍壓力 35 5.2.2 上下端鉸支承之圓錐薄殼僅承受軸壓力 .35 5.3 圓錐薄殼承受內壓力之膨脹行為 36 5.4 開封式圓錐淺殼之突跳分析 37 5.4.1不同開口夾角之突跳分析 37 第六章 結論 39 參考文獻 41

    參考文獻
    1. Newton, I., 《Methodus Fluxionum et Serierum Infinitarum》, (1644–1671).
    2. Raphson, J., “Analysis Aequationum Universalis”, 1690
    3. Riks, E., The application of Newton's method to the problem of elastic stability. J. of Applied Mechanics, 1972. 39(6p. 1060-1065)
    4. Riks, E., An incremental approach to the solution of snapping and buckling problems. J. of Solids Structures, 1979. 15, (23p 529-551)
    5. Wempner, G., Discrete approximations related to nonlinear theories of solids. J. of Solids Structures, 1971. 7(19p. 1581-1599)
    6. Crisfield, M. A., A faster modified newton-raphson iteration. J. of Computer Methods in Applied Mechanics and Engineering, 1979. 20 (12p. 267-278)
    7. Crisfield, M. A., A fast incremental/iterative solution procedure that handles snap-through. J. of Computer and Structures. 1981. 13(8p. 55-62)
    8. Ramm, E., Strategies for Tracing the Nonlinear Response near Limit Points. In: Nonlinear Finite Element Analysis in Structural Mechanics. Springer, New York, 1981. ( 22p. 68-89)
    9. Forde, B.W.R., Stiemer, S.F., Improved arc-length orthogonality methods for nonlinear finite element analysis. J. of Computer and Structures, 1987. 27(6p. 625-630)
    10. Al-Rasby, S.N., Solution techniques in nonlinear structural analysis. J. of Computer and Structures, 1991. 40(9p. 985-993)
    11. Fafard, M., Massicotte, B., Geometrical interpretation of the arc-length method. J. of Computer and Structures, 1993. 46(603-615)
    12. Carrera, E., A study on arc-length type methods andtheir operation failures illustrated by a simple model. J. of Computer and Structures, 1994. 50(13p. 217-229)
    13. Fan, Z.L., A study of variable step-length incremental/iterative methods for nonlinear finite element equations. J. of Computer and Structures, 1994. 52(7p. 1269-1275)
    14. Zhou, Z.L., Murray, D.W., An incremental solution technique for unstable equilibrium paths of shell structures. J. of Computer and Structures, 1994. 55(11p. 749-759)
    15. Lam, W.F., Morley, C.T., Arc-length method for passing limit points in structural calculation. J. of Structural Engineering, 1992. 118(17p. 169-185)
    16. Feng, Y.T., Peric, D., Owen, D.R.J., A new criterion for determination of initial loading parameter in arc-length methods. J. of Computer and Structures, 1996. 58(479-485)
    17. Bellini, P.X., and Chulya, A., An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. J. of Computer and Structures, 1987. 26(12p. 99-110)
    18. May, I.M., and Duan, Y., A local arc-length procedure for strain softening. J. of Computer and Structures, 1997. 64(7p. 297-303)
    19. Kuo, S.R., and Yang, Y.B., Tracing post buckling paths of structures containing multi-loops. J. of International Journal for Numerical Methods in Engineering, 1995. 38(23p. 4053-4075)
    20. Teng, J.G., and Luo, Y.F., A user-controlled arc-length method for convergence to predefined deformation states. J. of Communications in Numerical Methods in Engineering, 1998. 14(8p. 51-58)
    21. Janito V.F., and Alberto L.S., Application of the arc-length method in nonlinear frequency response. 2005
    22. 葉et al., 結構幾何非線性分析中分叉失穩的直接求解。 J. of 工程力學, 2011. 28 (8p. 1-8)
    23. 李元齊與沈祖炎, 弧長控制類方法使用中若干問題的討論與改進。 J. of 計算力學學報, 1998. 第十五卷第四期 (9p. 414-422)
    24. Lucy, L.B., Numerical approach to testing of fission hypothesis. J. of Astronomical Journal, 1977. 82(12p. 1013-1024)
    25. Lancaster, P. and K. Salkauskas, Surfaces generated by moving least-squares methods. Mathematics of Computation, 1981. 37(18p. 141-158)
    26. Nayroles, B., G. Touzot, and P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements. J. of Computational Mechanics, 1992. 10(12p. 307-318)
    27. Belytschko, T., Y.Y. Lu, and L. Gu, Element-free Galerkin methods. J. of International Journal for Numerical Methods in Engineering, 1994. 37(28p. 229-256)
    28. Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. J. of International Journal for Numerical Methods in Fluids, 1995. 20(26p. 1081-1106)
    29. Chen, J.S. ,Pan, C.H.,Wu, C.T. & Liu, W.K., Reproducing kernel particle methods for large deformation analysis of non-linear structures. J. of Computer Methods in Applied Mechanics and Engineering, 1996. 139(33p. 195-227)
    30. Onate, E.,Idelsohn, S.,Zienkiewicz, O.C.,Taylor, R.L.,Sacco, C., A stabilized finite point method for analysis of fluid mechanics problems. J. of Computer Methods in Applied Mechanics and Engineering, 1996. 139(32p. 315-346)
    31. Atluri, S.N. and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. J. of Computational Mechanics, 1998. 22(11p. 117-127)
    32. Zhang, X.G. ,Liu, X.H.,Song, K.Z.,Lu, M.W., Least-squares collocation meshless method. J. of International Journal for Numerical Methods in Engineering, 2001. 51(12p. 1089-1100)
    33. 戴伯璋,圓錐殼大變形理論分析,國立成功大學土木工程研究所碩士論文。2006。
    34. Wang, Y.M., S.M. Chen, and C.P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. J. of Computational Mechanics, 2010. 45(12p. 585-606)
    35. 張祐綱,Hermite type之移動最小二乘法在板、梁分析上之應用,國立成功大學土木工程研究所碩士論文,2009。
    36. 張延宗,基於狀態變數與Hermite型近似之移動最小二乘法在古典板之應用,國立成功大學土木工程研究所碩士論文,2014。
    37. 吳紹彬,應用移動最小二乘法於圓錐體薄殼大變形分析。國立成功大學土木工程研究所碩士論文,2015。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE