簡易檢索 / 詳目顯示

研究生: 張莉苓
Chang, Li-Ling
論文名稱: 兩成分及三成分含苯系高分子之相型態、微異態與相容性
Morphology, Microheterogeneity, and Miscibility in Binary vs. Ternary Blends of Styrenic Polymers
指導教授: 吳逸謨
Woo, E. M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 163
中文關鍵詞: UCST兩成分摻合系統作用力參數LCST三成分摻合系統
外文關鍵詞: binary polymer blend, ternary polymer blend, phase behavior, model calculation
相關次數: 點閱:58下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微分掃瞄熱卡計(DSC)、穿透式電子顯微鏡(POM)、掃瞄式電子顯微鏡(SEM)、原子力電子顯微鏡(AFM)、傅立葉紅外光譜儀(FTIR)與固態核磁共振儀(NMR)深入探討高分子兩成分摻合系統isotactic polystyrene/poly(cyclohexy methacrylate) (iPS/PCHMA)、 isotactic polystyrene/poly(4- methylstyrene) (iPS/P4MS) 與三成分摻合系統poly(cyclohexyl methacrylate)/poly(α-methylstyrene)/poly(4-methylstyrene) (PCHMA/PαMS/P4MS)、atactic polystyrene/ isotactic polystyrene/poly(cyclohexy methacrylate) (aPS/iPS/PCHMA)、atactic polystyrene /isotactic polystyrene/poly(2,6-dimethyl-p-phenylene oxide) (aPS/iPS/PPO)和atactic polystyrene/poly(α-methylstyrene)/poly(4-methylstyrene) (aPS/PαMS/P4MS),藉由改變立體空間排列或相似結構對其相型態、相容性與微觀異態之影響。在此分為二部分詳述:
    (1) 兩成分摻合系統
    在iPS/PCHMA兩成分摻合系統中,雖然經由熱分析研究可得到單一玻璃轉移溫度,但由於此兩個高分子Tg非常接近,所以利用焓鬆弛和物理老化現象來探討,實驗結果顯示,隨著老化時間(ta)的增加,在所有iPS/PCHMA摻合組成中仍維持單一吸熱峰,且其吸熱峰溫度會隨著老化時間的增加而往高溫位移。並進一步利用固態NMR進行 和 的測量,發現iPS/PCHMA摻合物均為單一值,且介於兩個純高分子之間,綜合實驗結果顯示iPS/PCHMA摻合系統在75~85nm範圍下,為一完全相容之系統。另外經由平衡熔點下降亦可得知存在此系統之作用力參數為一負值。經由POM觀察得知此系統擁有下臨界溶液溫度(lower critical solution temperature, LCST)行為。若改變PCHMA為P4MS,雖然此兩個高分子Tg非常接近,但仍可經由熱分析研究得到兩個明顯的玻璃轉移溫度,進一步利用SEM和AFM觀察發現,所有組成皆有微小相區域存在,所以iPS/P4MS兩成分系統,在室溫中為完全不相容摻合系統,且具有上臨界溶液溫度(upper critical solution temperature, UCST)行為,且隨著組成不同而溫度有所改變。

    (2) 三成分摻合系統
    在此四個摻合系統中,可分為兩大部分,首先為三個兩成分摻合系統皆為完全相容系統,且部分摻合系統存在著LCST行為,第二部分則為,三個兩成分摻合系統中僅一個摻合系統為完全相容,其餘為不相容系統,且同時並存著LCST和UCST行為。
    首先在PCHMA/PαMS/P4MS、aPS/iPS/PCHMA與aPS/iPS/PPO此三個三成分系統中,其個別的兩成分系統在室溫中皆為一完全相容之系統。經由熱分析結果皆得到單一玻璃轉移溫度,但若進一步以POM及SEM深入探討其真實相型態,我們可發現在PCHMA/PαMS/P4MS摻合系統中,為一部分相容之系統,當添加少量的PCHMA(≦30%)至PαMS/P4MS兩成分摻合系統中,使原先PαMS/P4MS兩成分摻合系統之LCST溫度(大約140℃)降低至室溫以下,造成此三成分系統在室溫中呈現一部分相容之現象。而在aPS/iPS/PCHMA與aPS/iPS/PPO此兩個三成分摻合系統中,則皆觀察到單一均相結構,所以在室溫下此兩個三成分系統為一完全相容之系統。另外,在PCHMA/PαMS/P4MS和aPS/iPS/PCHMA摻合系統中,均相組成部分會隨著溫度的增加,會由原先的均相轉變為相分離,此現在稱為LCST行為,但在aPS/iPS/PPO摻合系統則無LCST行為存在,由此可知aPS/iPS/PPO三成分摻合系統之相容性較PCHMA/PαMS/P4MS和aPS/iPS/PCHMA摻合系統良好。並進一步利用平衡熔點下降和熱力學理論來預測aPS/iPS/PCHMA和aPS/iPS/PPO三成分系統之相容區域,並和實驗值非常吻合。
    另外,在aPS/PαMS/P4MS系統中,僅PαMS/P4MS摻合系統為完全相容且存在LCST行為,其餘aPS/PαMS和aPS/P4MS為不相容系統,且分別存在著UCST行為。經由熱分析結果顯示所有組成皆得到單一玻璃轉移溫度,但若進一步以POM、SEM和固態NMR深入探討其真實相型態發現,大部分組成皆有微小相區域存在,僅在PαMS≧80%時,其存在著單一均勻相型態。在此三成分系統中,存在著UCST行為,在室溫下為一不相容之組成,隨著溫度的增加,而升溫至“clarity point”以上,轉變為均相型態,“clarity point”會隨著三成分摻合系統組成之改變而改變,其溫度範圍為210℃~280℃,最高之clarity point標記為三成分系統之UCST,其溫度約為271℃。

    Polystyrene (PS), poly(α-methylstyrene) (PαMS), and poly(4-methylstyrene) (P4MS) homopolymers of similar molecular structure and tacticity were blended with poly(2,6-dimethyl-p-phenylene oxide) (PPO) or poly(cyclohexy methacrylate) (PCHMA) via solution blending. The binary or ternary blends were then investigated by using differential scanning calorimeter (DSC), polarized-light optical microscopy (POM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and solid-state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR). These methods provided a determination of the effect of a third component on blend compatibility and molecular interaction in comparison to the miscible binary blend system. First, the iPS/PCHMA binary blend was found to be miscible with all compositions showing a single composition-dependent glass-transition temperature (Tg), and that the blend went through a thermodynamic phase transition upon heating to above the lower critical solution temperature (LCST) as determined by using POM. Solid-state CP/MAS NMR measurement of and relaxation times further confirmed homogeneous on a scale of 2.5~3.5 nm for iPS/PCHMA binary system. These results show that iPS and PCHMA are intimately mixed at the molecular level within the blends at all compositions. The tacticity of PS does not seem to adversely influence the miscibility in blends of iPS/PCHMA. The experimentally determined phase behavior of aPS/iPS/PCHMA and aPS/iPS/PPO is investigated. In both cases, each binary pair formed miscible blends because of favorable polymer-polymer interactions. These two ternary blend systems were completely miscible within the entire composition range at ambient temperature by using DSC, POM, and SEM. LCST behavior was observed for aPS/iPS/PCHMA blend, but not for aPS/iPS/PPO. Interaction energy densities in aPS/iPS/PCHMA and aPS/iPS/PPO ternary blends were evaluated by melting point depression. These parameters were used to calculate the locus of compositions that mark the boundary between single- and multiple- phase behavior. Agreement between the calculated and experimental boundary was only fair. The third ternary blends, aPS/PαMS/P4MS, consistent of two binary blends combinations with upper critical solution temperature (UCST) and one with LCST behavior. A ternary blend system of aPS/PαMS/P4MS exhibits miscibility at relatively high percentages of PαMS (≧80%). The SEM results for the aPS/PαMS/P4MS compositions were consist two coexisting aPS/PαMS and aPS/P4MS phases, and the blend relaxation times confirmed an upper limit to immiscibility on a ~40 nm distance scale. The as-cast ternary blend is immiscible at ambient temperature and comprises two different phases with similar refractive indices, and, however, turns into a miscible system above the “clarity point” ranging from 210 to 280℃ for different ternary compositions. The maximum clarity point is labeled as the UCST for the ternary system, which is about 271℃. Above the clarity point, the originally immiscible ternary blend turned into one miscible phase. Taken together, the results indicate that asymmetry in the binary interactions may led to ternary-phase instability manifested as large decreases in the temperatures at which phase separation/or phase homogenization occurs on heating (LCST or UCST behavior) ternary compositions relative to the binaries.

    ABSTRACT (Chinese and English) I ACKNOLEDGEMENT V CONTENT VI LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Binary Blend System 2 1.2 Ternary Blend System 5 CHAPTER 2 THEORY 7 2.1 Thermodynamic Stability Conditions for Two- and Three-Component Mixtures 7 2.2 Kinetics of Polymer-Polymer Phase Separation 9 2.3 Phase Formation of Binary and Ternary Blends 10 CHAPTER 3 EXPERIMENT 15 3.1 Materials 15 3.2 Sample Preparation 16 3.3 Apparatus 16 CHAPTER 4 RESULTS AND DISCUSSION 20 4.1 Thermal, Morphology, and NMR Characterizations on Phase Behavior and Miscibility in Blends of iPS and PCHMA 20 4.1-1 Thermal Analysis 20 4.1-2 Enthalpy Relaxation 22 4.1-3 13C NMR Spectra of iPS/PCHMA Blends 24 4.1-4 Measurements of Proton T1 25 4.1-5 Measurements of Proton T1ρ 27 4.1-6 Domain Size Determination 28 4.1-7 Lower Critical Solution Temperature (LCST) Behavior 29 4.1-8 FTIR Spectroscopy 30 4.1-9 Effect of Structure of Styrenic Polymers 31 4.1-10 Polymer-Polymer Interaction Parameter 32 4.2 Phase Behavior in Ternary Blend of Atactic Polystyrene /Isotactic Polystyrene/Poly(cyclohexyl methacrylate) in comparison with Atactic Polystyrene/Isotactic Polystyrene /Poly(2,6-dimethyl-p- phenylene oxide) 65 4.2-1 Thermal Analysis 65 4.2-2 Phase Morphology and Structure 66 4-2.3 Cloud-point transition of aPS/iPS/PCHMA Ternary Blend System 67 4-2.4 Analysis of Melting Point Depression of iPS in the Blends 68 4-2.5 Application of Binary Interaction Model to Ternary Polymer Blends 72 4.3 Phase Behavior of Ternary Blend of Atactic Polystyrene, Poly(α-methylstyrene), and Poly(4-methylstyrene) 91 4.3-1 Morphology and Thermal Characterization 91 4.3-2 Solid-State NMR: Proton Spin-Lattice Relaxation 92 4.3-2.1 Measurements of T1 and T1ρ 93 4.3-2.2 Domain Size Determination 95 4.3-3 Dilemma of Single Tg vs. Phase Separation 96 4.3-4 “Clarity Point” and UCST in the Ternary Blends 98 CHAPTER 5 CONCLUSION 121 CHAPTER 6 FUTURE WORK 123 REFERENCES 125 APENDIX 130 VITA 161

    1.Prud’homme, R. E. Polym Eng Sci 1982, 22, 90.
    2.Lau, C.; Zhong, Z.; Mi, Y. Macromolecules 1998, 31, 7291.
    3.Honeycutt, J. D. Macromolecules 1994, 27, 5377.
    4.Wang, J.; Cheung, M.; Mi, Y. Polymer 2001, 42, 2077.
    5.Albert, B.; Jerome, R.; Teyssie, R.; Smyth, G.; Boyle, N. G.; McBriety, V. J. Macromolecules 1985, 18, 388.
    6.Parmer, J. F.; Dickinson, L. C.; Chien, J. C. W.; Porter, R. S. Macromolecules 1989, 22, 4489.
    7.Stoelting, J.; Karasz, F. E.; MacKnight, W. J Polym Eng Sci 1970, 10, 133.
    8.Shultz, A. R.; Beach, B. M. Macromolecules 1974, 7, 902.
    9.Prest, Jr. W. M.; Porter, R. S. J Polym Sci: Part A-2 Polym Phys 1972, 10, 1639.
    10.Kwei, T. K.; Nishi, T.; Roberts, R. F. Macromolecules 1974, 7, 667.
    11.Bank, M.; Leffingwell, J.; Thies, C. Macromolecules 1971, 4, 43.
    12.Bank, M.; Leffingwell, J.; Thies, C. J Polym Sci: Part A-2 Polym Phys 1972, 10, 1097.
    13.Shultz, A. R.; Young, A. L. Macromolecules 1980, 13, 663.
    14.Jang, F. H.; Woo, E. M. Polymer 1999, 40, 2231.
    15.Friedrich, C.; Schwarzwalder, C.; Riemann, R. -E. Polymer 1996, 37, 2499.
    16.Woo, E. M.; Jang, F. H. Polymer 1999, 40, 3803.
    17.Chang, L. L.; Woo, E. M. Polym J 2001, 33, 13.
    18.Hodge, I. M.; Berens, A. R. Macromolecules 1981, 14, 1599.
    19.Bosma, M.; ten Brinke, G.; Ellis, T. S. Macromolecules 1988, 21, 1465.
    20.Grooten, R.; ten Brinke, G.; Macromolecules 1989, 22, 1761.
    21.Cowie, J. L.; Haaris, S.; Gomez Ribelles, J. L. G.; Meseguer, J. M.; Romero, F.; Torregrosa, C. Macromolecules 1999, 32, 4430.
    22.Naito, K.; Johnson, G. E.; Allara, D. L.; Kwei, T. K. Macromolecules 1978, 11, 1260.
    23.Hong, B. K.; Jo, W. H.; Kim, J. Polymer 1998, 39, 3753.
    24.Nishi, T.; Wang T. T. Macromolecules 1975, 8, 909.
    25.Huo, P. P.; Cebe, P. Macromolecules 1993, 26, 3127.
    26.Woo, E. M.; Mandal, T. K.; Lee, S. C. Colloid Polym Sci 2000, 278, 1032.
    27.Penning, J. P.; John Manley, R. St. Macromolecules 1996, 29, 77.
    28.Liu, A.S.; Liau, W. B.; Chiu, W. Y. Macromolecules 1998, 31, 6593.
    29.Dipaola-Baranyi, G.; Fletcher, S. J.; Degre, P. Macromolecules 1982, 18, 885.
    30.Olabisi, O. Macromolecules 1975, 8, 316.
    31.Schreiber, H. P.; Wertheimer, M. R.; Lambla, M. J Appl Polym Sci 1982, 27, 2269.
    32.Schmitt, R. L.; Gardella, J. A. Jr.; Salvati, L. Jr.; Macromolecules 1986, 19, 648.
    33.Lu, X.; Weiss, R. A. Macromolecules 1992, 25, 3242.
    34.Couchman, P. R. Macromolecules 1987, 20, 1712.
    35.Chun, Y. S.; Lee, H. S.; Jung, H. C.; Kim, W. N. J Appl Polym Sci 1999, 72, 733.
    36.Chun, Y. S.; Park, J.; Sun, J. B.; Kim, W. N. J Polym Sci B: Polym Phys 2000, 38, 2072.
    37.Shafee, E. E. Polymer 2002, 43, 921.
    38.Scott, R. L. J Chem Phys 1949, 17, 279.
    39.Plans, J.; MacKnight, W. J.; Karasz, F. E. Macromolecules 1984, 17, 810.
    40.Runt, J. P. Macromolecules 1981, 14, 420.
    41.Brannock, G. R.; Paul, D. R. Macromolecules 1990, 23, 5240.
    42.Yau, S. N.; Woo, E. M. Macromol Rapid Commun 1996, 17, 615.
    43.Tseng, Y. C.; Woo, E. M. Macromol Rapid Commun 1998, 19, 215.
    44.Cowie, J. M. G.; Li, G.; McEwen, I. J. Polymer 1994, 25, 5518.
    45.Pomposo, J. A.; Calahorra, E.; Eguiazabal, I.; Cortazar, M. Macromolecules 1993, 26, 2104.
    46.Jo, W. H.; Kwon, Y. K.; Kwon, I. H. Macromolecules 1991, 24, 4708.
    47.Min, K. E.; Chiou, J. S.; Barlow, J. W.; Paul, D. R. Polymer 1987, 28, 1721.
    48.Goh, S. H.; Ni, X. Polymer 1999, 40, 5733.
    49.Kuo, S. W.; Lin, C. C.; Chang, F. C. Macromolecules 2002, 35, 278.
    50.Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Painter, P. C.; Coleman, M. M. Polymer 1994, 25, 5379.
    51.Hong, B. K.; Kim, J. Y.; Jo, W. H.; Lee, S. C. Polymer 1997, 38, 4373.
    52.Saeki, S.; Cowie, J. M. G.; McEwen, I. J. Polymer 1983, 24, 60.
    53.Cowie, J. M. G.; McEwen, I. J. Polymer 1985, 26, 1667.
    54.Widmaier, J. M.; Mignard, G. Eur Polym J 1987, 23, 989.
    55.Lin, J. L.; Roe, R. J. Polymer 1988, 29, 1227.
    56.Schneider, H. A.; Dilger, P. Polym Bull 1989, 21, 265.
    57.Rameau, A.; Gallot, Y.; Marie, P.; Farnoux, B. Polymer 1989, 30, 386.
    58.Callaghan, T. A.; Paul, D. R. Macromolecules 1993, 26, 2439.
    59.Stroeks, A.; Paquaij, R.; Nies, E. Polymer 1991, 32, 2653.
    60.Londono, J. D.; Wignall, G. D. Macromolecules 1997, 30, 3821.
    61.Lang, S.; Sillescu, H. Makromol Chemie 1989, 190, 797.
    62.Chang, L. L.; Woo, E. M. Macromol Chem Phys 2001, 202, 636.
    63.Chang, L. L.; Woo, E. M. Macromolecules 2000, 33, 6892.
    64.Rabeony, M.; Siano, D. B.; Peiffer, D. G.; Siakali-Kioulafa, E.; Hadjichristidis, N. Polymer 1994, 35, 1003.
    65.Tseng, H. S.; Lloyd, D. R.; Ward, T. C. J Polym Sci 1991, 29, 161.
    66.Keitz, J. D.; Barlow, J. W.; Paul, D. R. J Appl Polym Sci 1984, 29, 3131.
    67.Robard, A.; Patterson, D. Macromolecules 1977, 10, 1021.
    68.Su, C. S.; Patterson, D. Macromolecules 1977, 10, 709.
    69.Bhattacharyya, C.; Maiti, N.; Mandal, B. M.; Bhattacharyya, S. N. Macromolecules 1989, 22, 487.
    70.Tompa, H. Trans Faraday Soc 1949, 45, 1142.
    71.Christiansen, W. H.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1987, 34, 537.
    72.Ameduri, B.; Prud’homme, R. E. Polymer 1988, 29, 1052.
    73.Koklas, S. N.; Sotiropoulou, D. D.; Kallitsis, J. K.; Kalfoglou, N. K. Polymer 1991, 32, 66.
    74.Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    75.Quian, C.; Mumby, S. J.; Eichinger, B. E. Macromolecules 1991, 24, 1655.
    76.Su, A. C.; Fried, J. R. Polym Eng Sci 1987, 27, 1657.
    77.Schmidt-Rohr, K.; Spiess, H. W. Multidimentional Solid-State NMR and Polymers, Chapter X, Academic Press, London 1996.
    78.Flory, P. J. Principles of Polymer Chemistry, Chapter XⅡ, Cornell University Press, Ithaca 1953.
    79.Sperling, L. H. Introduction to Physical Polymer Science, Chapter IX, John Wiley & Sons, Inc., New York 1992.
    80.Macosko, C. W.; Guegan, P.; Khandpur, A. K.; Nakayama, A. N.; Marechal, P.; Inoue, T. Macromolecules 1996, 29, 5590.
    81.Sundaraj, U.; Macosko, C. W. Macromolecules 1995, 28, 2647.
    82.Horiuchi, S.; Matchariyakul, N.; Yase, K.; Kitano, T. Macromolecules 1997, 30, 3664.
    83.Hobbs, S. Y.; Dekkers, M. E.; Watkius, V. H. Polymer 1988, 29, 1598.
    84.Kwei, T. K. J Polym Sci 1984, 22, 307.
    85.Couchman, P. R. Macromolecules 1978, 11, 1156.
    86.Kelley, F. N.; Beuche, F. J Polym Sci 1961, 50, 549.
    87.Karoha, R. J.; Porter, R. S. J Polym Sci Polym Phys Ed 1993; 32: 821.
    88.Song, M.; Hammiche, A.; Pollock, H. M. Polymer 1995, 36, 3313.
    89.Cowie, J. M. G.; Ferguson, R. Macromolecules 1989; 22: 2307.
    90.Cowie, J. M. G.; Ferguson, R. Macromolecules 1989; 22: 2312.
    91.Stejskal, E. O.; Schaefer, J.; Sefcik, M. D.; McKay, R. A. Macromolecules 1981, 14, 275.
    92.Dickinson, L. C.; Yang, H.; Chu, C. W.; Stein, R. S.; Chien, J. C. Macromolecules 1987, 20, 1757.
    93.Guo, M. Trends Polym Sci 1990, 4, 238.
    94.Asano, A.; Takegoshi, K.; Hikichi, K. Polymer 1994, 35, 5630.
    96.Kwak, S. Y.; Nakajima, N. Macromolecules 1996, 29, 3521.
    97.Fyfe, C. A. Solid State NMR for Chemists, C.F.C. Press: Canada, 1993.
    98.White, J. L.; Mirau, P. Macromolecules 1993, 26, 3049.
    99.Lau, C.; Mi, Y. J Polym Sci: Part B Polym Phys 2001, 39, 2390.
    100.Wagler, T.; Rinaldi, P. L. Macromolecules 2000, 33, 1778.
    101.McBriety, V. J.; Douglass, D. C.; Kwei, T. K. Macromolecules 1978, 11, 1256.
    102.Borey, F. A.; Miran, P. A. NMR of Polymers, Academic Press: New York, 1996.
    103.McBriety, V. J.; Douglass, D. C. J Polym Sci Macromol Rev 1981, 16, 295.
    104.Demco, D. E.; Johansson, A.; Tegenfeldt, J. Solid State Nucl Magn Reson 1995, 4, 13.
    105.Glauss, J.; Schmidt-Rohr, K.; Spiess, W. H. Acta Polmer 1993, 44, 1.
    106.Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W. Macromolecules 1992, 25, 3273.
    107.Opaprakasit, P.; Scaroni, A.; Painter, P. J Mol Struct 2001, 570, 25.
    108.Painter, P.; Park, Y; Coleman, M. J Appl Polym Sci 1998, 70, 1273.
    109.Woo, E. M.; Mandal, T. K.; Chang, L. L. Macromolecules 2000, 33, 4186.
    110.Viville, P.; Biscarini, F.; Bredas, J. L.; Lazzaroni, R. J Polym Chem B 2001, 105, 7499.
    111.Berghmans, H.; Overbergh, N. J Polym Sci Polym Phys Ed 1977, 48, 4068.
    112.Lemstra, P. J.; Kooistra, T.; Challa, G. J Polym Sci Part A-2 1972, 10, 823.
    113.Hoffman, J. D.; Weeks, J. J. J Res Natl Bur Stand 1962, 66, 13.
    114.Al-Hussein, M.; Strobl, G. Macromolecules 2002, 35, 1672.
    115.Ziska, J. J.; Barlow, J. W.; Paul, D. R. Polymer 1981, 22, 918.
    116.Fox, T. G. Bull Am Phys Soc 1956, 2, 123.
    117.Hildebrand, J. H.; Scott, R. L. The Solubility of Nonelectrolytes, Dover, New York, 1964.
    118.Barlow, J. W.; Paul, D. R. Ann Rev Mater Sci 1981, 11, 299.
    119.Paul, D. R.; Barlow, J. W. Polymer 1984, 25, 487.
    120.Shah, V. S.; Keitz, J. D.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1986, 32, 3863.
    121.Kwei, T. K.; Frisch, H. L.; Radigan, W.; Vogel, S. Macromolecules 1977, 10, 157.
    122.Woo, E. M.; Barlow, J. W.; Paul, D. R. J Appl Polym Sci 1984, 29, 3837.
    123.Harris, J. E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J Appl Polym Sci 1982, 27, 839.
    124.Aubin, M.; Prud’homme, R. E. Macromolecules 1980, 13, 365.
    125.MacKnight, W. J.; Harasz, F. E.; Fried, J. R.; Paul, D. R.; Newman, S. Polymer Blends, vol. 1, Chapter X, Academic Press, New York 1978.
    126.Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, New York, John Wiely & Sons, 1999.

    下載圖示 校內:2004-07-11公開
    校外:2004-07-11公開
    QR CODE