簡易檢索 / 詳目顯示

研究生: 黃芊瑀
Huang, Chien-Yu
論文名稱: 探討PBL跨域課程對教師教學行為、學生參與行為和批判思考能力之影響:線上行為觀測系統之實施
The Effectiveness of Transdisciplinary PBL on Teachers’ Teaching Behavior, Students’ Engagement Behavior and Critical Thinking Ability by Adding-on an Online Behavioral Observation System
指導教授: 楊雅婷
Yang, Ya-Ting
學位類別: 碩士
Master
系所名稱: 社會科學院 - 教育研究所
Institute of Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 198
中文關鍵詞: 專題導向式學習跨域課程教師教學行為學生參與行為批判思考能力線上行為觀測系統
外文關鍵詞: Project-based Learning, Transdisciplinary course, Teachers’ teaching behavior, Students’ engagement behavior, Critical thinking ability, Online behavioral observation system
相關次數: 點閱:258下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 專題導向式學習(Project-based Learning, PBL)結合跨域課程為全球教育之趨勢,過去研究PBL跨域課程之主軸,大多著重於學生的學習成果與成效,忽略探究學習過程之重要性。因此,本研究旨在探討PBL跨域課程對教師教學行為、學生參與行為和批判思考能力之影響,並運用線上行為觀測系統蒐集課室行為資料。研究對象為高雄市某國中二年級兩個班級共51位學生,進行為期14週的實驗課程。自變項為不同層次的STEAM跨域課程(Science, Technology, Engineering, Arts, Mathematics, STEAM),分別為科際整合的PBL跨域課程(Interdisciplinary Project-based Learning, IPBL)(實驗班1)與超學科的PBL跨域課程(Transdisciplinary Project-based Learning, TPBL)(實驗班2),依變項為教師教學行為、學生參與行為和批判思考能力,其中批判思考能力包含批判思考技能與態度兩個面向。批判思考技能採用兩種研究工具蒐集資料,分別為線上行為觀測系統(Generalized Observation and Reflection Platform, GORP)、批判思考測驗—第一級。批判思考態度採用批判思考意向量表蒐集資料。資料分析方法採用卡方同質性檢定、多變量變異數分析(MANOVA)、單因子共變數分析(one-way ANCOVA)、單因子多變量共變數分析(one-way MANCOVA)。實驗結束後,對教師與學生進行質性訪談。研究結果顯示:
    一、TPBL跨域課程比起IPBL跨域課程,進行更多以學生為中心的教學。
    二、TPBL跨域課程比起IPBL跨域課程,更能夠提升學生主動參與、個人建構與互
    動建構之參與行為。
    三、TPBL跨域課程比起IPBL跨域課程,更能夠提升學生批判思考能力,包括技能和態度。
    四、根據訪談結果,學生認為與過去傳統課程只能被動聽課相比,TPBL跨域課程讓他們有更多主動參與以上的行為,其中,大量的討論與實作活動更促進學生的批判思考能力。
    最後,依據本研究結果,第一,建議未來可以將批判思考策略融入TPBL跨域課程,引導學生達到更具內容深度和更高互動層次的批判思考技能。第二,相關研究指出TPBL跨域課程對其他高層次能力(如:創造力與問題解決能力)也有影響,建議未來研究可以開發創造力以及問題解決能力的線上課室觀察介面,探究TPBL對所有高層次思考的學習過程之影響與不同思考能力間之交互影響。第三,建議未來研究應將欲進行比較的兩班課程,先統一主題,再進行不同跨域層次之比較。

    The purpose of this study was to investigate the impact of Transdisciplinary PBL on teachers’ teaching behavior, students’ engagement behavior and critical thinking ability through an online behavioral observation system (Generalized Observation and Reflection Platform, GORP).
    A pretest-midtest-posttest design was used for this study. In addition, this study was divided into 4 time points, including pre-test (lecture), discussion, hands-on and presentation. The participants were 51 eighth-grade students in two classes. This experiment was conducted for 14 weeks. The independent variable was STEAM course with two different levels, Interdisciplinary Project-based Learning (IPBL) course (the Experiment Group 1) and Transdisciplinary Project-based Learning (TPBL) course (the Experiment Group 2). The dependent variables were teachers’ teaching behavior, students’ engagement behavior and critical thinking ability. In addition, critical thinking ability includes critical thinking skills and critical thinking dispositions. According to the purpose of the research, the research tools are the GORP system, Critical Thinking Test-Level I and Critical Thinking Disposition Inventory. The chi-square test (test of homogeneity), MANOVA, one-way ANCOVA and one-way MANCOVA were used for this study. In addition, interviews were conducted to explore teachers’ and students’ perspectives after the experiment. The results from data analysis are as below:
    1. Teachers’ teaching behaviors in TPBL course were mainly student-centered.
    2. TPBL course enhanced students' engagement behaviors in Active, Constructive, and Interactive.
    3. TPBL course improved students' critical thinking ability, including skills and dispositions.
    4. Concluding from the interviews, students thought TPBL course made them to have more Active and above engagement behaviors. In addition, plenty of discussions and hands-on activities promoted students' critical thinking ability.

    目錄 XI 表目錄 XIV 圖目錄 XVII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的與待答問題 9 第三節 名詞釋義 10 第二章 文獻探討 14 第一節 PBL跨域課程之探究 14 第二節 教師教學行為之探究 21 第三節 學生參與行為之探究 24 第四節 批判思考能力之探究 29 第五節 線上行為觀測系統之探究 40 第三章 研究方法 45 第一節 研究設計 45 第二節 研究假設 49 第三節 研究對象與場域 49 第四節 課程內容與程序 50 第五節 研究工具 55 第六節 資料分析 65 第四章 研究結果 66 第一節 基本資料以及前測學生基準點比較 66 第二節 不同PBL跨域課程(IPBL與TPBL)對教師教學行為之差異 68 第三節 不同PBL跨域課程(IPBL與TPBL)對學生參與行為之差異 69 第四節 不同PBL跨域課程(IPBL與TPBL)對學生批判思考技能之差異 86 第五節 不同PBL跨域課程(IPBL與TPBL)對學生批判思考態度之差異 96 第六節 質性訪談結果 98 第五章 討論、結論與建議 111 第一節 討論 111 第二節 結論 135 第三節 研究限制與未來建議 140 參考文獻 143 壹、中文文獻 143 貳、英文文獻 149 附錄一 COPCT架構之類別說明 175 附錄二 學生基本資料問卷 177 附錄三 「批判思考測驗—第一級」使用同意書 179 附錄四 質性訪談逐字稿 180

    田昊民(2020)。Mayer解題策略應用在STEM跨領域教學對國小程式設計學習成效之影響。國立臺北教育大學數學暨資訊教育學系碩士班未出版之碩士論文。
    吳俊憲(2007)。提升教師專業發展知能─教室觀察。靜宜大學師培實習輔導通訊,4,8-10。
    呂秀蓮(2018)。下世代教育─STEAM新素養。清華教育,95,1-6。
    李佳容(2018)。成人學習者在 PBL 課程的批判思考能力探討:學生是否更會思考。T&D 飛訊,248,1-26。
    李懿芳(2019)。芬蘭現象本位教學課程改革之理念與實踐。教育政策論壇,22,1-26。https://doi.org/10.3966/156082982019052202001
    周淑卿、王郁雯(2019)。從課程統整到跨領域課程:台灣二十年的論述與問題。教育學報,47(2),41-59。
    林志成(2018)。素養導向特色學校發展之實踐與建議。學校行政雙月刊,118,111-125。
    林奇賢(2017)。新世代的創新學習模式互聯網+PBL理論與實施策略。高等教育。
    林珊如、陳思光、陳瑋、蕭若綺、林志鴻、趙雅琪、蘇雅雯(2021)。國中科技課堂的教學數據分析與回饋系統:以課室觀察與行動型眼動裝置檢驗教學事件對注意力與情緒經驗的長期效果:期中報告(計畫編號:108-2511-H-009-008-MY3)。科技部人文司資訊教育學門。
    林敬堯(2020)。團隊導向學習法提升學生核心素養之省思-以跨領域專題製作為例。臺灣教育評論月刊,9(6),61-67。
    林新發、林寬豪(2021)。前瞻高教的變革與治理—大專生應具備之關鍵素養。臺灣教育評論月刊,10(1),44-58。
    邱沛文(2020)。跨領域教學活動對國小學童的學習成效。中華大學旅遊與休閒學系未出版之碩士論文。
    邱韻如(2019)。從動眼看到動手做:基本功力的厚植與波動概念的教學。物理教育學刊,20(2),37-47。
    柯昭伊(2015)。數位說故事對國中生生涯探索能力、批判思考能力與溝通表達能力之影響。國立成功大學教育研究所未出版之碩士論文。
    洪久賢、蔡長艷(1997)。家政科實施批判思考教學之實踐與成效評估研究(計畫編號:NSC86-2745-H003-008R)。行政院國家科學委員會專題研究計畫成果報告。
    洪炎揚(2019)。跨領域學程學習成效之探討。國立中央大學數學研究所未出版之碩士論文。
    洪詠善(2016)。學習趨勢:跨領域現象為本的統整學習。國家教育研究院電子報。http://epaper.naer.edu.tw/print.php?edm_no=134&content_no=2671
    洪慈憶(2021)。科技融入跨域專題導向學習對學生學習素養之影響。國立成功大學教育研究所未出版之碩士論文。
    倪禎憶(2018)。跨域專題導向課程對偏鄉國中學生學習動機、創意思考與問題解決能力之影響。國立成功大學教育研究所未出版之碩士論文。
    孫志麟(2010)。專業學習社群:促進教師專業發展的平台。學校行政,69,138-158.
    徐文男、黃淑貞、李宗洲、黃正發、姚麗吉、許美觀、黃嘉源、林美秀(2016)。 透過課室觀察提升有效教學。教育脈動,8,237-240。
    翁崇文(2018)。國小推動科技教育教學的困境與策略。臺灣教育評論月刊,7(10),219-221。
    馬黎娜(2018)。STEAM理念在小學科學教學中的應用。新智慧,26。
    張玉成(2013)。思考技巧與教學。心理。
    張慶勳(2018)。素養導向的未來師資培力。學校行政,113,11-18。https://doi:10.3966/160683002018010113002
    教育部(2011)。中華民國教育報告全文版。https://ws.moe.edu.tw/001/Upload/3/RelFile/7829/39374/中華民國教育報告書全文版.pdf
    教育部(2014)。十二年國民基本教育課程綱要總綱。https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_5320_2729842_56626.pdf
    教育部(2019)。十二年國民基本教育課程綱要─科技領域課程手冊。
    許瑜庭(2019)。以教師在職進修國中表演藝術為第二專長角度看跨學科教學之能力發展。國立臺灣師範大學表演藝術研究所未出版之碩士論文。https://doi:10.6345/NTNU201900726
    郭文金、梁惠珍、柳賢(2015)。數學動手做活動對六七年級女學生數學學習自我效能影響之初探。科學教育,1,54-82。
    郭癸賓、林靜宜、鄭峰茂、高俊傑、李晟瑋(2020)。探索課程融入體育教學對大學生在生活效能、團隊凝聚力與學習行為之成效。休閒事業研究,18(1),63-75。https://doi:10.6746/LIR.202003_18(1).0004
    陳竹亭、唐功培(2013)。跨科際教育在臺灣大專校院實施之探究。長庚人文社會學報,6(2),159-195。
    陳佩英(2018)。跨領域素養導向課程設計工作坊之構思與實踐。課程研究,13(2),21-42。https://doi:10.3966/181653382018091302002
    陳俊太(2019)。奈米的奇幻旅程—科學與藝術的跨領域學習(計畫編號:PMS107041)。教育部教學實踐研究計畫成果報告。
    陳筠芳(2020)。光影偶戲融入國小五年級視覺藝術跨領域教學之行動研究。國立臺中教育大學美術學系碩士在職專班未出版之碩士論文。
    陳慧蓉(2016)。大學質性評鑑的挑戰:系所與外部專家評鑑觀點的一致性分析。當代教育研究季刊,24(2),75-109。
    湯維玲(2019)。探究美國STEM與STEAM教育的發展。課程與教學,22(2),49-77。https://doi:10.6384/CIQ.201904_22(2).0003
    馮永敏、邢小萍(2016)。論國語文專業教師課室觀察的實施。國教新知,63(1),24-39。
    黃志雄(2015)。問題導向學習對大學生學習動機與成果影響之研究:以一所私立科大幼保系的課程為例。兒童照顧與教育,5,55-69。
    黃柏軒(2020)。國中跨域課程對學生運算思維與學習成效之影響。國立成功大學教育研究所未出版之碩士論文。
    黃靖文(2018)。大陸學生來台就學之學習行為、學校支持與學習滿意度之研究。經營管理學刊,15,66-84。
    黃聰惠(2018)。科學態度與科學素養之相關研究。臺灣教育評論月刊,7(7),142-145。
    楊宗明(2019)。學科?非學科?綜合活動領域存在的學科價值。高等教育,14(1),99-118。
    楊雅婷、Timothy Newby、Robert Bill。透過非同步線上討論區促進學習互動:提昇學生批判思考能力之實徵研究。成大研發快訊,3(7),6。
    楊雅婷、林秋斌、林奇賢、林珊如(2020)。教育部中小學數位學習深耕推動計畫2020年期末報告書。教育部委託之專題研究成果報告。
    葉子明、白凢芸、許藝瀧(2020)。高職工業類科學生學習行為、教學型態與學習環境對技能檢定學習成效影響之研究。兩岸職業教育論叢,4(1),85-101。https://doi:10.6685/ASVEJ.202010_4(1).0008
    葉玉珠(1999)。代理(課)教師批判思考教學專業知識、個人教學效能及教學行為之現況及關係之研究。國立政治大學學報,78,55-84。
    葉玉珠(1999)。批判思考意向量表。載於葉玉珠、葉碧玲、謝佳蓁(2000)。中小學批判思考技巧測驗之發展。測驗年刊,47(1),45。
    葉玉珠(2002)。批判思考的內涵詮釋與有效教師行為。通識教育季刊,9(3),151-170。
    葉玉珠(2012)。批判思考教學:理論與教學設計。國立臺灣大學教學發展中心電子報,76。
    葉玉珠、葉碧玲、謝佳蓁(2003)。批判思考測驗─第一級指導手冊。心理。
    葉建宏(2017)。我國專業技術人才培育之困境與展望。臺灣教育評論月刊,6(3),110-112。
    葉栢維(2017)。STEAM 理論融入國小科技實作的活動設計: 橡皮筋動力車向前衝。科技與人力教育季刊,4(1),63-75。
    賓靜蓀(2017)。5 大精神,培養STEAM新素養。親子天下雜誌,89。
    趙慧臣、陸曉婷(2016)。發展STEAM 教育,提高學生創新能力─訪美國STEAM 教育知名學者格雷特.亞克門教授。開放教育研究,22(5),4-10。
    劉以慧、陳柏霖(2012)。大學生創意思考教學的行動研究。通識教育與跨域研究,12,43-64。
    劉徽、徐玲玲、滕梅芳(2020)。大概念視角下的跨學科課程設計。課程研究,15(2),21-48。https://doi.org/ 10.3966/181653382020091502002
    歐用生(2005)。日本綜合學習課程之分析。國立臺北教育大學學報,18(2),1-24。
    蔡佳雯(2021)。食農教育實施之初探。臺灣教育評論月刊,10(1),193-197。
    鄭英耀、吳靜吉、王文中、黃正鵠(1996)。批判思考量表之編製初步報告。中國測驗學會測驗年刊,43,213-226。
    盧姵綺(2019)。STEAM跨領域美感教育專題教學設計之探究。藝術教育研究,37,49-82。https://doi.org/10.6622/RAE.201905_37.0002
    賴昭宇(2019)。淺談國語文課綱對國中國文教師的影響。臺灣教育評論月刊,8(5),164-170。
    謝如梅(2020)。跨域團隊創意實踐與自主學習的挑戰。大學教學實務與研究學刊,4(1)。https://doi:10.6870/JTPRHE.202006_4(1).0004
    鍾佳庭。運用批判思考教學培養國小六年級學生媒體素養之行動研究。國立臺中教育大學教育學系課程與教學碩士在職專班未出版之碩士論文。
    簡幸如、劉旨峰(2009)。專題導向數位遊戲製作教學模式之個案探討。人文暨社會科學期刊,5(2),113-130。
    羅永吉(2020)。論「知性、理性、感性、覺性」均衡發展的通識教育。止善,29,111-134。
    蘇明勇(2003)。批判思考之思考批判:科學教育中的批判思考教學與評量。科學教育研究與發展,2003專刊,88-119。
    蘇明勇、黃萬居(2006)。蘇格拉底詰問模式對六年級學生批判思考能力與傾向之影響。科學教育學刊,4(5),597-614。
    Abma, T. A. (2006). The social relations of evaluation. In I. Shaw, J. C. Greene, & M. M. Mark (Eds.), The sage handbook of evaluation (pp. 184-199). Sage.
    Acar, D., Tertemiz, N., & Taşdemir, A. (2018). The effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on STEM training. International Electronic Journal of Elementary Education, 10(4), 505-513. https://doi.org/10.26822/iejee.2018438141
    Adriyawati , A., Utomo, E., Rahmawati, Y., & Mardiah, A. (2020). STEAM-project-based learning integration to improve elementary school students' scientific literacy on alternative energy learning. Universal Journal of Educational Research, 8(5), 1863-1873. https://doi.org/10.13189/ujer.2020.080523
    Akiha, K., Brigham, E., Couch, B. A., Lewin, J., Stains, M., Stetzer, M. R., Vinson, E. L. & Smith, M. K. (2018). What types of instructional shifts do students experience? Investigating active learning in science, technology, engineering, and math classes across key transition points from middle school to the university level. Frontiers in Education, 2, 68. https://doi.org/10.3389/feduc.2017.00068
    Al Awawdeh, S., Baggili, I., Marrington, A. and Iqbal, F. (2013, November 21-22). CAT Record (computer activity timeline record): A unified agent based approach for real time computer forensic evidence collection [Conference presentation]. 2013 8th International Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE), Hong Kong, China. https://doi.org/10.1109/SADFE.2013.6911539
    Alfonso, D. V. (2015). Evidence of critical thinking in high school humanities classrooms. GIST–Education and Learning Research Journal, 11, 26-44. https://doi.org/10.26817/16925777.281
    Alsina, Á., Ayllón, S., Colomer, J., Fernández-Peña, R., Fullana, J., Pallisera, M., Pérez-Burrielfh, Marc. & Serra, L. (2017). Improving and evaluating reflective narratives: A rubric for higher education students. Teaching and Teacher Education, 63, 148-158. https://doi.org/10.1016/j.tate.2016.12.015
    Anderson, J. R. (2010). Cognitive psychology and its implications. Worth Publishers.
    Anggraeni, R. E. & Suratno (2021). The analysis of the development of the 5E-STEAM learning model to improve critical thinking skills in natural science lesson. Journal of Physics: Conference Series, 1832, 1, 012050. https://doi.org/10.1088/1742-6596/1832/1/012050
    Anwar, S., & Menekse, M. (2021). A systematic review of observation protocol used in postsecondary STEM classrooms. Review of Education, 9(1), 81-120. https://doi.org/10.1002/rev3.3235
    Awuor, N. O., Weng, C., & Militar, R. (2022). Teamwork competency and satisfaction in online group project-based engineering course: The cross-level moderating effect of collective efficacy and flipped instruction. Computers & Education, 176, 104357. https://doi.org/10.1016/j.compedu.2021.104357
    Axelson, R. D., & Flick, A. (2010). Defining student engagement. Change: The Magazine of Higher Learning, 43(1), 38-43. https://doi.org/10.1080/00091383.2011.533096
    Baepler, P., Walker, J. D., Brooks, D. C., Saichaie, K., & Petersen, C. I. (2016). A guide to teaching in the active learning classroom: History, research, and practice. Stylus Publishing, LLC.
    Bandyopadhyay, S., & Szostek, J. (2019). Thinking critically about critical thinking: Assessing critical thinking of business students using multiple measures. Journal of Education for Business, 94(4), 259-270. https://doi.org/10.1080/08832323.2018.1524355
    Barak, M., & Assal, M. (2018). Robotics and STEM learning: Students’ achievements in assignments according to the P3 task taxonomy-practice, problem solving, and projects. International Journal of Technology and Design Education, 28(1), 121-144. https://doi.org/10.1007/s10798-016-9385-9
    Barak, M., & Dori, Y. J. (2009). Enhancing higher order thinking skills among inservice science teachers via embedded assessment. Journal of Science Teacher Education, 20(5), 459-474. https://doi.org/10.1007/s10972-009-9141-z
    Barlow, A., & Brown, S. (2020). Correlations between modes of student cognitive engagement and instructional practices in undergraduate STEM courses. International Journal of STEM Education, 7(1), 1-15. https://doi.org/10.1186/s40594-020-00214-7
    Bartlett, D., & Cox, P. D. (2002). Measuring change in students' critical thinking ability: Implications for health care education. Journal of Allied Health, 31(2), 64-69.
    Bassachs, M., Cañabate, D., Nogué, L., Serra, T., Bubnys, R., & Colomer, J. (2020). Fostering critical reflection in primary education through STEAM approaches. Education Sciences, 10(12), 384. https://doi.org/10.3390/educsci10120384
    Bemiss, A. (2021). Inspiring innovation and creativity in young learners: Transforming STEAM education for Pre-K-Grade 3. Routledge. https://doi.org/10.4324/9781003235811
    Boonpienpon, N. (2019). Learning achievement of undergraduate students, exhibition and event management, faculty of management science, Silpakorn University, learning by teaching and learning management in the form of project-based learning. Veridian E-Journal, 12(5), 58-70.
    Bruning, R. H., Schraw, G. J., & Ronning, R. R. (2021). Cognitive psychology and instruction. ( 5th ed.). Pearson Educaion.
    Bubnys, R. (2019). A journey of self-reflection in students’ perception of practice and roles in the profession. Sustainability, 11(1), 194. https://doi.org/10.3390/su11010194
    Bush, S. B., & Cook, K. L. (2019). Structuring STEAM inquiries: Lessons learned from practice. In M. S. Khine, & Areepattamannil. S. (Eds.), STEAM education (pp.19-35). Springer. https://doi.org/10.1007/978-3-030-04003-1_2
    Cai H., Ouyang B., Liu D., Li B., Li C., He Z. (2021). STEAM education mode based on new technology and user experience design. In T.Z. Ahram, & C.S. Falcão (Eds.), Advances in usability, user experience, wearable and assistive technology (pp.630-639. Springer. https://doi.org/10.1007/978-3-030-80091-8_75
    Cameron, S., & Craig, C. (2016). STEM labs for middle grades, grades 5-8. Mark Twain Media.
    Cañabate, D., Garcia-Romeu, M. L., Menció, A., Nogué, L., Planas, M., & Solé-Pla, J. (2020). Cross-disciplinary analysis of cooperative learning dimensions based on higher education students’ perceptions. Sustainability, 12(19), 8156. https://doi.org/10.3390/su12198156
    Capraro, M. M., Capraro, R. M., Stearns, L., & Morgan, J. (2011). A teacher observation instrument: Looking at PBL classroom instruction. 9th annual Hawaii International Conference on Education, Honolulu, Hawaii.
    Carey, B. (2015). How we learn: The surprising truth about when, where, and why it happens. Random House Trade.
    Cebrián, G., Junyent, M., & Mulà, I. (2020). Competencies in education for sustainable development: Emerging teaching and research developments. Sustainability, 12(2), 579. https://doi.org/10.3390/su12020579
    Çevik, M. (2018). Impacts of the project based (PBL) science, technology, engineering and mathematics (STEM) education on academic achievement and career interests of vocational high school students. Pegem Journal of Education and Instruction, 8(2), 281-306.
    Chen, C. H., & Yang, Y. C. (2019). Revisiting the effects of project-based learning on students’ academic achievement: A meta-analysis investigating moderators. Educational Research Review, 26, 71-81. https://doi.org/10.1016/j.edurev.2018.11.001
    Chen, Y., & Chang, C.-C. (2018). The impact of an integrated robotics STEM course with a sailboat topic on high school students’ perceptions of integrative STEM, interest, and career orientation. EURASIA Journal of Mathematics, Science and Technology Education, 14(12), 1614. https://doi.org/10.29333/ejmste/94314
    Chi, M. T. H. (2009). Active‐constructive‐interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105. https://doi.org/10.1111/j.1756-8765.2008.01005.x
    Chi, M.T.H., Adams, J., Bogusch, E.B., Bruchok, C., Kang, S., Lancaster, M., Levy, R., Li, N., McEldoon, K.L., Stump, G.S., Wylie, R., Xu, D. & Yaghmourian, D.L. (2018). Translating the ICAP theory of cognitive engagement into practice. Cognitive Science, 42, 1777-1832. https://doi.org/10.1111/cogs.12626
    Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219-243. https://doi.org/10.1080/00461520.2014.965823
    Chiang, C.-L., & Lee, H. (2016). The effect of project-based learning on learning motivation and problem-solving ability of vocational high school students. International Journal of Information and Education Technology, 6(9), 709-712. https://doi.org/10.7763/IJIET.2016.V6.779
    Chung, C. C., Huang, S. L., Cheng, Y. M., & Lou, S. J. (2020). Using an iSTEAM project-based learning model for technology senior high school students: Design, development, and evaluation. International Journal of Technology and Design Education, 1-37. https://doi.org/10.1007/s10798-020-09643-5
    Chung, S. K., & Li, D. (2021). Issues-based STEAM education: A case study in a Hong Kong secondary school. International Journal of Education & the Arts, 22(3). http://doi.org/10.26209/ijea22n3
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
    Colomer, J., Serra, L., Cañabate, D., & Serra, T. (2018). Evaluating knowledge and assessment-centered reflective-based learning approaches. Sustainability, 10(9), 3122. https://doi.org/10.3390/su10093122
    Conradty, C., & Bogner, F. X. (2019). From STEM to STEAM: Cracking the code? How creativity & motivation interacts with inquiry-based learning. Creativity Research Journal, 31(3), 284-295. https://doi.org/10.1080/10400419.2019.1641678
    Cottrell, S. (2011). Critical thinking skills: Effective analysis, argument and reflection. Macmillan International Higher Education.
    Cowden, C. D., & Santiago, M. F. (2016). Interdisciplinary explorations: Promoting critical thinking via problem-based learning in an advanced biochemistry class. Journal of Chemical Education, 93(3), 464-469. https://doi.org/10.1021/acs.jchemed.5b00378
    DeWaelsche, S. A. (2015). Critical thinking, questioning and student engagement in Korean university English courses. Linguistics and Education, 32 (Part B), 131-147. https://doi.org/10.1016/j.linged.2015.10.003
    Diawati, C., Setiabudi, & Buchari. (2018). Using project-based learning to design, build, and test student-made photometer by measuring the unknown concentration of colored substances. Journal of Chemical Education, 95(3), 468-475.
    Di Serio, Á., Ibáñez, M. B., & Delgado-Kloos, C. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586-596.
    Doig, B., Williams, J., Swanson, D., Ferri, R. B., & Drake, P. (2019). Interdisciplinary mathematics education: The state of the art and beyond. Springer.
    Drake, S. M., & Burns, R. (2004). Meeting standards through integrated curriculum. Alexandria, VA: Association for supervision and curriculum development.
    Drake, S. M., & Reid, J. (2017). Interdisciplinary assessment in the 21st century. Academic Exchange Quarterly, 21(1), 1096-1453.
    Ellis, R. J. (2009). “Problems may cut right across the borders”: Why we cannot do without interdisciplinarity. In B. Chandramohan, & S. Fallows (Eds.), Interdisciplinary learning and teaching in higher education (pp. 3-17). Routledge.
    ElSayary, A. (2021). Designing and teaching transdisciplinary STEAM curriculum using authentic assessment in online learning. Journal of Turkish Science Education, 18(3), 493-511. https://orcid.org/0000-0002-5554-0069
    Ennis, R. H. (1996). Critical thinking dispositions: Their nature and assessability. Informal Logic, 18(2), 165-182.
    Ennis, R. H. (1987). A taxonomy of critical thinking dispositions and abilities. In J. Baron, & R. Sternberg (Eds.), Teaching thinking skills: Theory and practice (pp. 9-26). Freemen.
    Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction (The Delphi Report). California Academic Press.
    Facione, P. A. (2007). Critical thinking: What it is and why it counts. California Academic Press.
    Facione, P. A., Facione, N. & Giancarlo, C. (1996). The motivation to think in working and learning. In E. Jones (Ed.), Defining expectations for student learning. Jossey-Bass Inc.
    Facione, P. A., Facione, N. C., & Giancarlo, C. A. F. (2001). California critical thinking disposition inventory: CCTDI manual. California Academic Press.
    Facione, P. A., Sanchez, C. A., & Facione, N. C. (1994). Are college students disposed to think? California Academic Press.
    Fang, H., Gao, C., & Chen, J. (2012). Improved flanders interactive analysis system and its application. China Electronic Education, 10, 109-113.
    Fisher, A. (2001). Critical thinking: An introduction. Cambridge University.
    Forlizzi, L., & Carman, P. (1993). Project lifelong learning: Five strategies for achieving national education goal 5. Pennsylvania State University.
    Fung, D. (2017). The pedagogical impacts on students’ development of critical thinking dispositions: Experience from Hong Kong secondary schools. Thinking Skills and Creativity, 26, 128-139. https://doi.org/10.1016/j.tsc.2017.10.005
    Furness, J., Cowie, B., and Cooper, B. (2017). Scoping the meaning of ‘Critical’ in mathematical thinking for initial teacher education. Policy Futures in Education, 15(6), 713-28. https://doi.org/10.1177/1478210317719778.
    Gamoran, A. (2016). Will latest U.S. law lead to successful schools in STEM? Despite shortcomings, there is room for cautious optimism. Science, 353(6305), 1209-1211. https://doi.org/10.1126/science.aah4037
    Garrison, D. R. (1992). Critical thinking and self-directed learning in adult education: An analysis of responsibility and control issues. Adult Education Quarterly, 42(3), 136-148. https://doi.org/10.1177/074171369204200302
    Gerke, A. (2017). Interdisciplinary education in the elementary curriculum: Exploring teacher perceptions and practices. [Master’s thesis, University of Toronto]. http://hdl.handle.net/1807/77014
    Goh, F., Carroll, A., & Gillies, R. M. (2019). A review of the use of portable technologies as observational aids in the classroom. Information and Learning Sciences, 120(3), 228-241. https://doi.org/10.1108/ILS-08-2018-0080
    Gombrich, C. (2018). Implementing interdisciplinary curricula: Some philosophical and practical remarks. European Review, 26(S2), S41-S54. https://doi.org/10.1017/S1062798718000315
    Grady, J. B. (1994). Interdisciplinary curriculum development. ERIC Digest. (ERIC Document Reproduction Service No. ED375903)
    Gross, K., & Gross, S. (2016). Transformation: Constructivism, design thinking, and elementary STEAM. Art Education, 69(6), 36-43.
    Gude, O. (2013). New school art styles: The project of art education. Art Education, 66(1), 6-15.
    Gunawardena, C., Lowe, C., & Anderson, T. (1997). Analysis of global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of Educational Computing Research, 17(4), 397-431.
    Hadinugrahaningsih, T., Rahmawati, Y., & Ridwan, A. (2017). Developing 21st century skills in chemistry classrooms: Opportunities and challenges of STEAM integration. AIP Conference Proceedings, 1868(1), 030008. https://doi.org/10.1063/1.4995107
    Hadzhikoleva, S., Hadzhikolev, E., & Kasakliev, N. (2019). Using peer assessment to enhance higher order thinking skills. Tem Journal, 8(1), 242-247. https://doi.org/10.18421/TEM81-34
    Haghparast, M., Nasaruddin, F. H., & Abdullah, N. (2014). Cultivating critical thinking through e-learning environment and tools: A review. Procedia-Social and Behavioral Sciences, 129, 527-535. https://doi.org/10.1016/j.sbspro.2014.03.710
    Han, S., Hong, R., An, X., & Li, Y. (2020). Case study of teacher training for project STEM Course. Journal of Education and Training Studies, 8(10), 10-21. https://doi.org/10.11114/jets.v8i10.4956
    Harris, M. J. (2014). The challenges of implementing project based learning in middle schools [Doctoral dissertation, Pittsburgh University].
    Hartini, A. (2017). Pengembangan perangkat pembelajaran model project based learning untuk meningkatkan kemampuan berpikir kritis siswa sekolah dasar. ELSE (Elementary School Education Journal): Jurnal Pendidikan dan Pembelajaran Sekolah Dasar, 1(2), 3-7.
    Hartmann, D. P., & Wood, D. D. (1990). Observational methods. In A. S. Bellack, M. Hersen, & A. E. Kazdin (Eds.), International handbook of behavior modification and therapy (pp. 107-138). Plenum.
    Hawari, A. D. M., & Noor, A. I. M. (2020). Project Based Learning Pedagogical Design in STEAM Art Education. Asian Journal of University Education, 16(3), 102-111.
    Henriksen, D. (2017). Creating STEAM with design thinking: Beyond STEM and arts integration. The STEAM Journal, 3(1), 11. https://doi.org/10.5642/steam.20170301.11
    Herro, D., & Quigley, C. (2016). Innovating with STEAM in middle school classrooms: Remixing education. On the Horizon, 24(3), 190-204.
    Herro, D., & Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: Implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507
    Hora, M. T., Oleson, A., & Ferrare, J. J. (2013). Teaching dimensions observation protocol (TDOP) user’s manual. University of Wisconsin-Madison. http://tdop.wceruw.org/Document/TDOP-Users-Guide.pdf
    Hou, M. (2020). Analysis and application of teaching behavior of teachers and students to education optimization based on education big data. SSRN. http://doi.org/10.2139/ssrn.3649325
    Howells, K. (2018). The future of education and skills: education 2030: The future we want. OECD. http://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf
    Hsiao, J. C., Chen, S. K., Chen, W., & Lin, S. S. (2022). Developing a plugged-in class observation protocol in high-school blended STEM classes: Student engagement, teacher behaviors and student-teacher interaction patterns. Computers & Education, 178, 104403. https://doi.org/10.1016/j.compedu.2021.104403
    Hung, C. M., Hwang, G. J., & Huang, I. (2012). A project-based digital storytelling. Approach for improving students’ learning motivation, problem-solving competence and learning achievement. Educational Technology & Society, 15(4), 368-379.
    Insight Assessment (2017). California critical thinking skills test: User manual and resource guide. California Academic.
    International Society for Technology in Education. (2007). ISTE standards for students. https://www.iste.org/standards/iste-standards-for-students
    Irawatie, A., Iswahyuni, I., & Setyawati, M. E. (2019). Education learning development of character education-based state defense. International Journal of Multicultural and Multireligious Understanding, 6(8), 27-42.
    Ismajli, H., Bytyqi-Damoni, A., Shatri, K., & Ozogul, G. (2020). Coaching teachers to integrate technology: The effects of technology integration on student performance and critical thinking. Ilkogretim Online, 19(3), 1306-1320. https://doi.org/10.17051/ilkonline.2020.728584
    Ismayani, A. (2016). Pengaruh penerapan STEM project-based learning terhadap kreativitas matematis siswa SMK. Indonesian Digital Journal of Mathematics and Education, 3(4), 264-272.
    Jacobs, J. A., & Frickel, S. (2009). Interdisciplinarity: A critical assessment. Annual Review of Sociology, 35, 43-65. https://doi.org/10.1146/annurev-soc-070308-115954
    Jayarajah, K., Saat, R. M., Rauf, A., & Amnah, R. (2014). A review of science, technology, engineering & mathematics (STEM) education research from 1999-2013: A Malaysian perspective. Eurasia Journal of Mathematics, Science & Technology Education, 10(3), 155-163. https://doi.org/10.12973/eurasia.2014.1072a
    Johnson, D. (2017). The role of teachers in motivating students to learn. BU Journal of Graduate Studies in Education, 9(1), 46-49.
    Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
    Kosslyn, S.M. (2020). Active learning online: Five principles that make online courses come alive. Alinea Learning.
    Kranzfelder, P., Lo, A. T., Melloy, M. P., Walker, L. E., & Warfa, A. R. M. (2019). Instructional practices in reformed undergraduate STEM learning environments: A study of instructor and student behaviors in biology courses. International Journal of Science Education, 41(14), 1944-1961. https://doi.org/10.1080/09500693.2019.1649503
    Kuo, H.-C., Tseng, Y.-C., & Yang, Y.-T. C. (2019). Promoting college student’s learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course. Thinking Skills and Creativity, 31, 1-10. https://doi.org/10.1016/j.tsc.2018.09.001
    Kusumi, T. (2019). Cultivation of a critical thinking disposition and inquiry skills among high school students. In E. Manalo (Ed.), Deeper learning, dialogic learning, and critical thinking. Routledge.
    Laboy-Rush, D. L. (2015, November 15). Integrated STEM education through project-based learning. Learning.com. https://www.rondout.k12.ny.us/common/pages/DisplayFile.aspx?itemId=16466975
    Lai, E. R. (2011). Critical thinking: A literature review. Pearson's Research Reports, 6(1), 40-41.
    Lansu, A., Boon, J., Sloep, P. B., & van Dam-Mieras, R. (2013). Changing professional demands in sustainable regional development: A curriculum design process to meet transboundary competence. Journal of Cleaner Production, 49, 123-133. https://doi.org/10.1016/j.jclepro.2012.10.019
    Lattuca, L. R., Knight, D., & Bergom, I. (2013). Developing a measure of interdisciplinary competence. The International Journal of Engineering Education, 29(3), 726-739.
    Lechelt, S., Rogers, Y., & Marquardt, N. (2020). Coming to your senses: Promoting critical thinking about sensors through playful interaction in classrooms. Proceedings of the Interaction Design and Children Conference, 11-22. https://doi.org/10.1145/3392063.3394401
    Lee, Y., Capraro, R. M., & Bicer, A. (2019). Affective mathematics engagement: A comparison of STEM PBL versus non-STEM PBL instruction. Mathematics and Technology Education, 19, 270-289. https://doi.org/10.1007/s42330-019-00050-0
    Lestari, T. P., Sarwi, S., & Sumarti, S. S. (2018). STEM-based project based learning model to increase science process and creative thinking skills of 5th grade. Journal of Primary Education, 7(1), 18-24. https://doi.org/10.15294/JPE.V7I1.21382
    Li, Y., Huang, Z., Jiang, M., & Chang, T.-W. (2016). The effect on pupils' science performance and problem-solving ability through Lego: An engineering design-based modeling approach. Educational Technology & Society, 19(3), 143-156.
    Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. Art Education, 69(6), 44-49.
    Lin, K.-Y., Hsiao, H.-S., Chang, Y.-S., Chien, Y.-H., & Wu, Y.-T. (2018). The effectiveness of using 3D printing technology in STEM project-based learning activities. EURASIA Journal of Mathematics, Science and Technology Education, 14(12), 1633. https://doi.org/10.29333/ejmste/97189
    Lutfi, I., & Azis, A. (2018). Effect of project-based learning integrated STEM against science literacy, creativity and learning outcomes on environmental pollution subject [Paper presentation]. Prosiding Seminar Nasional Biologi dan Pembelajarannya, Indonesia.
    Madden, M. E., Baxter, M., Beauchamp, H., Bouchard, K., Habermas, D., Huff, M., Ladd, B., Pearon, J., & Plague, G. (2013). Rethinking STEM education: An interdisciplinary STEAM curriculum. Procedia Computer Science, 20, 541-546. https://doi.org/10.1016/j.procs.2013.09.316
    Maeda, J. (2013). STEM + Art = STEAM. The STEAM Journal, 1(1), 1-3.
    Mallon, W. T., & Bunton, S. A. (2005). The functions of centers and institutes in academic biomedical research. Analysis in Brief, 5(1), 1-2.
    Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6, 2. https://doi.org/10.1186/s40594-018-0151-2
    Mecklenbräuker, S., Steffens, M. C., Jelenec, P., & Goergens, N. K. (2011). Interactive context integration in children? Evidence from an action memory study. Journal of Experimental Child Psychology, 108(4), 747-761. https://doi.org/10.1016/j.jecp.2010.12.002
    Mettas, A. C., & Constantinou, C. C. (2008). The technology fair: A project-based learning approach for enhancing problem solving skills and interest in design and technology education. International Journal of Technology and Design Education, 18(1), 79-100. https://doi.org/10.1007/s10798-006-9011-3
    Meyrick, K. M. (2012). How STEM education improves student learning. Meridian K-12 School Computer Technologies Journal, 14(1), 1-6.
    Moore, J. L., & Marra, R. M. (2005). A comparative analysis of online discussion participation protocols. Journal of Research on Technology in Education, 38(2), 191-212.
    Mutakinati, L., Anwari, I., & Kumano, Y. (2018). Analysis of students’ critical thinking skill of middle school through stem education project-based learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54-65.
    Nasir, M., Fakhrunnisa, R., & Nastiti, L. R. (2019). The implementation of project-based learning and guided inquiry to improve science process skills and student cognitive learning outcomes. International Journal of Environment & Science Education, 14(5), 229-238.
    Newman, D., Webb, B., & Cochrane, C. (1995). A content analysis method to measure critical thinking in face-to-face and computer supported group learning. Interpersonal Computing and Technology: An Electronic Journal for the 21st Century, 3(2), 56-77.
    Nilsen, T. & Gustafsson, J.-E. (2016). Teacher quality, instructional quality and student outcome: Relationships across countries, cohorts and time. Springer.
    Nong, C. (2021). A study on the relationship between pre-school children’s learning behavior and teachers’ teaching behavior. US-China Education Review, 11(3), 101-107. https://doi.org/10.17265/2161-6248/2021.03.003
    Norris, S. P. (1985). Synthesis of research on critical thinking. Educational Leadership, 42(8), 40-45.
    Norris, S. P., & Ennis, R. H. (1989). Evaluation critical thinking. Critical Thinking Press & Software.
    O'Leary, M. (2013). Classroom observation: A guide to the effective observation of teaching and learning. Routledge. https://doi.org/10.4324/9780203119730
    Orsucci, F. F. (2019). Interdisciplinary knowledge and beyond: Algorithms and patterns. Chaos and Complexity Letters, 13(1), 1-13.
    Paul, R. & Elder, L. (2006). The miniature guide to critical thinking: Concepts and tools. The Foundation for Critical Thinking.
    Pecore, J. L. (2013). Beyond beliefs: Teachers adapting problem-based learning to preexisting systems of practice. Interdisciplinary Journal of Problem-Based Learning, 7(2), 1. https://doi.org/10.7771/1541-5015.1359
    Poth, C. (2018). The contributions of mixed insights to advancing technology-enhanced formative assessments within higher education learning environments: an illustrative example. International Journal of Educational Technology in Higher Education, 15(1), 1-19. https://doi.org/10.1186/s41239-018-0090-5
    Prieto-Lopez, Y., & Ayala-Pazmino, F. (2020). The stimulation of written texts in students from Espiritu Santo University through the scientific communication and research methodology classes. Journal of Language Teaching and Research, 11(3), 359-363. https://doi.org/10.17507/jltr.1103.03
    Prince, M. J., & Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education, 95(2), 123-138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x
    Quigley, C.F., Herro, D., Baker, A. (2019). Moving toward transdisciplinary instruction: A longitudinal examination of STEAM teaching practices. In M. S. Khine, & Areepattamannil. S. (Eds.), STEAM education (pp.143-164). Springer. https://doi.org/10.1007/978-3-030-04003-1_8
    Quigley, C. F., Herro, D., Shekell, C., Cian, H., & Jacques, L. (2020). Connected learning in STEAM classrooms: Opportunities for engaging youth in science and math classrooms. International Journal of Science and Mathematics Education, 18(8), 1441-1463. https://doi.org/10.1007/s10763-019-10034-z
    Rahman, M. S. (2020). The advantages and disadvantages of using qualitative and quantitative approaches and methods in language “testing and assessment” research: A literature review. Journal of Education and Learning, 6(1), 102-112. https://doi.org/10.5539/jel.v6n1p102
    Rahmawati, Y., Ridwan, A., Hadinugrahaningsih, T., & Soeprijanto (2019). Developing critical and creative thinking skills through STEAM integration in chemistry learning. Journal of Physics: Conference Series, 1156(1), 012033. https://doi.org/10.1088/1742-6596/1156/1/012033
    Rais, M. (2010). Model project based-learning sebagai upaya meningkatkan prestasi akademik mahasiswa, Jurnal Pendidikan dan Pengajaran Undiksha, 43(3), 246-252.
    Renatovna, A. G., & Renatovna, A. S. (2021). Pedagogical and psychological conditions of preparing students for social relations on the basis of the development of critical thinking. Psychology and Education, 58(2), 4889-4902. https://doi.org/10.17762/pae.v58i2.2886
    Repko, A. F., & Szostak, R (2020). Interdisciplinary research: Process and theory (4th ed.). SAGE
    Repko, A. F., Szostak, R., & Buchberger, M. P. (2019). Introduction to interdisciplinary studies (3rd ed.). SAGE.
    Richardson, A. J. (2012). Paradigms, theory and management accounting practice: A comment on Parker (forthcoming) “Qualitative management accounting research: Assessing deliverables and relevance”. Critical Perspectives on Accounting, 23(1), 83-88. https://doi.org/10.1016/j.cpa.2011.05.003
    Ricketts, J., Lewis, C., & Faulkner, P. (2017). The evaluation of critical thinking dispositions in high school agriculture teachers. Journal of Southern Agricultural Education Research, 67(1), 54-70.
    Ridlo, S. (2020). Critical thinking skills reviewed from communication skills of the primary school students in STEM-based project-based learning model. Journal of Primary Education, 9(3), 311-320. https://doi.org/10.15294/JPE.V9I3.27573
    Rini, D, Adisyahputra, & Sigit, D. (2020). Boosting student critical thinking ability through project based learning, motivation and visual, auditory, kinesthetic learning style: A study on Ecosystem topic. Universal Journal of Educational Research, 8(4A), 37-44. https://doi.org/10.13189/ujer.2020.081806
    Rolling, J. H., Jr. (2016). Reinventing the STEAM engine for art + design education. Art Education, 69(4), 4-7.
    Rowan, N., Kommor, P., Herd, A., Salmon, P., & Benson, P. (2015). Critical thinking and interdisciplinary development fostering critical thinking in an interdisciplinary wellness coaching academic program. European Scientific Journal, 11(8). https://eujournal.org/index.php/esj/article/view/5254
    Rumsey, M., Thiessen, J., Buchan, J., & Daly, J. (2016). The consequences of English language testing for international health professionals and students: An Australian case study. International Journal of Nursing Studies, 54, 95-103. https://doi.org/10.1016/j.ijnurstu.2015.06.001
    Santau, A. O., & Ritter, J. K. (2013). What to teach and how to teach it: Elementary teachers' views on teaching inquiry-based, interdisciplinary science and social studies in urban settings. The New Educator, 9(4), 255-286. https://doi.org/10.1080/1547688X.2013.841498
    Saputra, M.D., Joyoatmojo, S., Wardani, D.K., & Sangka, K.B. (2019). Developing critical-thinking skills through the collaboration of Jigsaw model with problem-based learning model. International Journal of Instruction, 12(1), 1077-1094. https://doi.org/10.29333/iji.2019.12169a
    Sara, H. (2018). The effect of science, technology, engineering and mathematics-STEM educational practices on students’ learning outcomes: A meta-analysis study. Turkish Online Journal of Educational Technology, 17(2), 125-142.
    Sashin, A. (2019). The Role of Interdisciplinary Project-Based Learning in Integrated STEM Education. In A. Sashin (Ed.), STEM education 2.0 (pp.93-113). Brill Sense. https://doi.org/10.1163/9789004405400_006
    Sasson, I., Yehuda, I., & Malkinson, N. (2018). Fostering the skills of critical thinking and question-posing in a project-based learning environment. Thinking Skills and Creativity, 29, 203-212. https://doi.org/10.1016/j.tsc.2018.08.001
    Sawada D., Piburn M. D., Judson E., Turley J., Falconer K., Benford R., & Bloom I. (2002). Measuring reform practices in science and mathematics classrooms: The reformed teaching observation protocol. School Science and Mathematics, 102(6), 245-253. https://doi.org/10.1111/j.1949-8594.2002.tb17883.x
    Schellens, T., & Valcke, M. (2005). Collaborative learning in asynchronous discussion groups: What about the impact on cognitive processing? Computers in Human Behavior, 21(6), 957-976.
    Schnitzler, K., Holzberger, D., & Seidel, T. (2021). All better than being disengaged: Student engagement patterns and their relations to academic self-concept and achievement. European Journal of Psychology of Education, 36(3), 627-652. https://doi.org/10.1007/s10212-020-00500-6
    Schoenfeld, A. H., Floden, R., Chidiac, F. E., Gillingham, D., Fink, F., Hu, S., Sayavedra, A., Weltman, A., & Zarkh, A. (2018). On classroom observations. Journal for STEM Educational Research, 1, 34-59. https://doi.org/10.1007/s41979-018-0001-7
    Setiyawin, R. R., & Sulistyaningrum, H. (2021). Implementation of STEAM-PjBL to increase learning outcomes of grade vI elementary school students. Proceeding of International Conference in Education, Science and Technology, 44, 361-368.
    Shahzadi, U., Hussain, S. N., & Jamil, M. (2021). Assessing the critical thinking skills of students at higher secondary level. Review of Education, Administration & LAW, 4(2), 451-462. https://doi.org/10.47067/real.v4i2.158
    Shin, K. R., Hwang, J. W., & Shin, S. J. (2008). Concept analysis on the clinical critical thinking ability in nursing. Korean Journal of Adult Nursing, 20(5), 707-718.
    Siedentop, D., & Tannehill, D. (2000). Developing teaching skills in physical education (4th ed.). Mayfield.
    Sierra, D. H., Rojas, J. G., & García, Á. R. (2019). Implementando las metodologías steam y abp en la enseñanza de la física mediante Arduino. Memorias de Congresos UTP ,133-137.
    Smith, M. K., Jones, F. H., Gilbert, S. L., & Wieman, C. E. (2013). The classroom observation protocol for undergraduate STEM (COPUS): A new instrument to characterize university STEM classroom practices. CBE-Life Sciences Education, 12(4), 618-627.
    Soros, P., Ponkham, K., & Ekkapim, S. (2018). The results of STEM education methods for enhancing critical thinking and problem solving skill in physics the 10th grade level. AIP Conference Proceedings, 1923(1), 030045. https://doi.org/10.1063/1.5019536
    Stanley, T. (2018). Authentic learning: real-world experiences that build 21st-century skills. Prufrock Press, Inc.
    Sternberg, R. J. (1986). Critical thinking: Its nature, measurement, and improvement. National Institute of Education.
    Stewart, A. J., Mueller, M. P., & Tippins, D. J. (2020). Converting STEM into STEAM programs: Methods and examples from and for education. Springer Nature. https://doi.org/10.1007/978-3-030-25101-7
    Sumarni, W., & Kadarwati, S. (2020). Ethno-STEM project-based learning: Its impact to critical and creative thinking skills. Jurnal Pendidikan IPA Indonesia, 9(1), 11-21.
    Surya, J. P., Abdurrahman, A., & Wahyudi, I. (2018). Implementation of the stem learning to improve the creative thinking skills of high school student in the newton law of gravity material. Journal of Komodo Science Education, 1(1), 106-116.
    Swennen, A. (2020). Experiential learning as the ‘new normal’in teacher education. European Journal of Teacher Education, 43(5), 657-659. https://doi.org/10.1080/02619768.2020.1836599s
    Takeuchi, M. A., Sengupta, P., Shanahan, M. C., Adams, J. D., & Hachem, M. (2020). Transdisciplinarity in STEM education: A critical review. Studies in Science Education, 56(2), 213-253. https://doi.org/10.1080/03057267.2020.1755802
    Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Academic and out-of-class influences on students' intellectual orientations. The Review of Higher Education, 19(1), 23-44.
    Thonney, T., & Montgomery, J. C. (2019). Defining critical thinking across disciplines: An analysis of community college faculty perspectives. College Teaching, 67(3), 169-176. https://doi.org/10.1080/87567555.2019.1579700
    Thuneberg, H. M., Salmi, H. S., & Bogner, F. X. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. https://doi.org/10.1016/j.tsc.2018.07.003
    Tripp, B., & Shortlidge, E. E. (2019). A framework to guide undergraduate education in interdisciplinary science. CBE-Life Sciences Education, 18(2), es3. https://doi.org/10.1187/cbe.18-11-0226
    Ubben, G. (2019). Using project-based learning to teach STEAM. In Stewart, A.J., Mueller, M.P., & Tippins, D.J. (Eds.), Converting STEM into STEAM programs. Environmental Discourses in Science Education (pp.67-83). Springer. https://doi.org/10.1007/978-3-030-25101-7_6
    University of California-Davis. (n.d.). Generalized Observation and Reflection Platform (GORP). https://cee.ucdavis.edu/GORP
    Vossen, T., Henze, I., Rippe, R. C. A., Van Driel, J. H., & De Vries, M. J. (2021). Attitudes of secondary school STEM teachers towards supervising research and design activities. Research in Science Education, 51, 891-911. https://doi.org/10.1007/s11165-019-9840-1
    Wahono, B., Lin, P-L, & Chang, C-Y. (2020). Evidence of STEM enactment effectiveness in Asian student learning outcomes. International Journal of STEM Education, 7(36). https://doi.org/10.1186/s40594-020-00236-1
    Walker, S. E. (2003). Active learning strategies to promote critical thinking. Journal of Athletic Training, 38(3), 263-267.
    Wang, T., Liang, L., & Zheng, M. H. (2020). Application of formative evaluation and teaching feedback in PBL teaching of medical genetics. Yi chuan = Hereditas, 42(8), 810-816. https://doi.org/10.16288/j.yczz.20-068
    Wang, W. (2021). Evaluation principles’ influence of critical thinking foreign language teaching on German literature classroom learning motivation. Revista De Cercetare și Intervenție Socială, 73, 81-94. https://doi.org/10.33788/rcis.73.6
    Wang, X., Xu, W., & Guo, L. (2018). The status quo and ways of STEAM education promoting China’s future social sustainable development. Sustainability, 10(12), 4417. https://doi.org/10.3390/su10124417
    Waxman, H. C. (2003). Systematic classroom observation. In J. W. Guthrie (Ed.), Encyclopedia of education (2nd ed.) (pp. 303-310). Macmillan.
    Waxman, H. C., Padrón, Y. N., Shin, J. Y., & Rivera, H. H. (2008). Closing the achievement gap within reading and mathematics classrooms by fostering Hispanic students’ educational resilience. International Journal of Human and Social Sciences, 3(1), 24-34.
    Webster, T. (2018). Examining the effectiveness of an educational intervention aimed at teaching critical thinking to radiography students: A mixed methods approach. University of Nebraska Medical Center.
    Wilson, H. E., Song, H., Johnson, J., Presley, L., & Olson, K. (2021). Effects of transdisciplinary STEAM lessons on student critical and creative thinking. The Journal of Educational Research, 114(5), 445-457. https://doi.org/10.1080/00220671.2021.1975090
    Wiratno, D., Mirianto, A., Cahyadi, T., Zuhri, Z., & Harini, N. V. (2021). The design of the ship’s fuel estimation simulator uses a case study of the bung tomo trainer ship. IOP Conference Series: Materials Science and Engineering, 1010(1), 012027.
    World Economic Forum. (2022). The world economic forum: A partner in shaping history. World Economic Forum. https://www3.weforum.org/docs/WEF_Catalysing_Education_4.0_2022.pdf
    Yan, N., & Au, O. T. S. (2019). Online learning behavior analysis based on machine learning. Asian Association of Open Universities Journal, 14(2), 97-106. https://doi.org/10.1108/AAOUJ-08-2019-0029
    Yang, Y.-T. C. (2008). A catalyst for teaching critical thinking in a large university class in Taiwan: Asynchronous online discussions with the facilitation of teaching assistants. Educational Technology Research and Development, 56(3), 241-264. https://doi.org/10.1007/s11423-007-9054-5
    Yang, Y.‐T. C. & Chou, H.‐A. (2008). Beyond critical thinking skills: Investigating the relationship between critical thinking skills and dispositions through different online instructional strategies. British Journal of Educational Technology, 39, 666-684. https://doi.org/10.1111/j.1467-8535.2007.00767.x
    Yang, Y.-T. C., & Wu, W.-C. I. (2012). Digital storytelling for enhancing student academic achievement, critical thinking, and learning motivation: A year-long experimental study. Computers & Education, 59(2), 339-352. https://doi.org/10.1016/j.compedu.2011.12.012
    Yasseen, B. M. B. (2010). The effect of teachers’ behavior on students’ behavior in the classroom. International Forum of Teaching & Studies, 6(1), 48-57.
    Yildirim, B., & Turk, C. (2018). The effectiveness of argumentation-assisted STEM practices. Cypriot Journal of Educational Sciences, 13(3), 259-274.
    Yue, M., Zhang, M., Zhang, C., & Jin, C. (2017). The effectiveness of concept mapping on development of critical thinking in nursing education: A systematic review and meta-analysis. Nurse Education Today, 52, 87-94.
    Zaare, M. (2013). An investigation into the effect of classroom observation on teaching methodology. Procedia-Social and Behavioral Sciences, 70, 605-614. https://doi.org/10.1016/j.sbspro.2013.01.099
    Zhang, L., & Kim, S. (2018). Critical thinking cultivation in Chinese college English classes. English Language Teaching, 11(8), 1-6. http://doi.org/10.5539/elt.v11n8p1
    Zhao, R., Chen, Q., An, X., Gong, X., & Ma, N. (2019, October 27-31). A comparative analysis of forum and barrage interactive patterns in online language learning [Conference presentation]. 2019 Eighth International Conference on Educational Innovation through Technology (EITT) (pp. 25-30). IEEE. http://doi.org/10.1109/EITT.2019.00014
    ŽivkoviĿ, S. (2016). A model of critical thinking as an important attribute for success in the 21st century. Procedia-Social and Behavioral Sciences, 232, 102-108. https://doi.org/10.1016/j.sbspro.2016.10.034

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE