| 研究生: |
高一鳴 Kao, Yi-Ming |
|---|---|
| 論文名稱: |
氣磁雙控之新式滑軌懸浮設計與驗證 Design and Verification of Innovative Slider Levitation by Cooperation of Pneumatic and Magnetic Control |
| 指導教授: |
蔡南全
Tsai, Nan-Chyuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 位置偏移節制 、模糊滑動控制器 、氣磁雙控 |
| 外文關鍵詞: | Position Deviation Regulation, Fuzzy Sliding Mode Control, Cooperation of Pneumatic and Magnetic Control |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對行駛於氣靜壓直線導軌上之台車作位置偏移節制(Position Deviation Regulation),除了台車之前後移動之自由度外(即X軸),本論文所節制的台車位置偏離共有五個自由度,有角度偏擺(φ, θ, Ψ),分別對應X軸、Y軸及Z軸之旋轉運動,以及線位移偏離(y, z),分別對應台車沿Y軸及Z軸之直線運動。本研究總共使用八個磁致動器,與一組能將電壓信號轉換成線性比例的空壓信號輸出之轉換器,簡稱電空比例閥或電空轉換器(Electropneumatic Transducer, EPT),此電空比例閥可以藉由控制電壓訊號調整輸出氣壓之壓力,主要用以氣浮台車重量。其中的四組鉛直方向磁致動器搭配電空比例閥可調整氣壓對台車繞X軸、Y軸之旋轉運動與沿Z軸之直線運動,節制台車位置偏移,另外四組水平方向磁致動器對台車繞Z軸旋轉運動及沿Y軸直線運動,節制其位置偏移。
首先,本論文先針對台車動態作系統建模,其中包含了台車承受的負載不確定性。因為負載不確定性為未知,故本研究根據(i)負載最大重量,(ii)負載擺放在台車之可能位置,與(iii)台車之尺寸,設計一具有強健性之模糊滑動控制器(Fuzzy Sliding Mode Controller),並初步對其進行電腦模擬與分析以驗證所提控制策略的可行性。
最後,本研究成功地製作出一氣靜壓直線導軌台車穩定系統雛形,搭配訊號處理模組(DS-1104 by dSPACE)及開發軟體套件(MATLAB/Simulink)進行實地驗證。實驗結果顯示,本研究所提之控制器約可節制線性位置偏移量在(-40,+40)微米之範圍內,偏擺角度的抑制控制在(-0.002,+0.002)度之內,驅動八顆磁致動器之電流都不會超過1安培。
The major target of this research is to develop a slider levitation system by cooperation of pneumatic and magnetic control such that its position deviation of five degrees of freedom (DOFs) can be regulated. Secondly, subject to load uncertainty, a robust controller, namely Fuzzy Sliding Mode Controller (FSMC), to retain the stability and performance of the levitation system is proposed. Lastly, an experimental setup is established to verify the efficacy of FSMC based on real-time feedback signals by gap sensors and cooperation of 8 magnetic actuators and a set of electropneumatic transducer (EPT) equipped to counterbalance the weight of slider.
[1] S. K. Ro, S. Kim, Y. Kwak, C. H. Park, “A linear air bearing stage with active magnetic preloads for ultraprecise straight motion”, Precision Engineering, Vol. 34, No. 1, pp. 186-194, 2010.
[2] B. Denkena, H. C. M hring, H. Kayapinar, “A novel fluid-dynamic drive principle for desktop machines”, CIRP Journal of Manufacturing Science and Technology, Vol. 6, No. 2, pp. 89-97, 2013.
[3] C. H. Kim , K. J. Kim , J. S. Yu , H. W. Cho, “Dynamic Performance Evaluation of 5-DOF Magnetic Levitation and Guidance Device by Using Equivalent Magnetic Circuit Model”, IEEE Transactions on Magnetics, Vol. 49, No. 7, pp. 4156-4159, 2013.
[4] R. W. Fox, P. J. Pritchard, A. T. McDonald, “Introduction to Fluid Mechanics”, 2008.
[5] D. K. Cheng, “Field and Wave Electromagnetics”, 1989.
[6] S. L. Chen, C. T. Hsu, “Optimal Design of A Three-Pole Active Magnetic Bearing”, IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3458-3466, 2002.
[7] 江朝文 (民 94),高速微米精度磁浮系統之整頻順滑控制,國立成功大學機械工程學系碩士論文。
[8] W. Perruquetti, J. P. Barbot, “Sliding Mode Control in Engineering”, 2002.
[9] V. I. Utkin, V. Ivanovich, “Sliding Mode Control in Electromechanical Systems”, 1999.
[10] Y. Shtessel, “Sliding Mode Control and Observation”, 2014.
[11] M. Jamshidi, N. Vadiee, T. J. Ross, “Fuzzy logic and control : software and hardware applications”, 1993.
[12] D. Driankov, “An Introduction to Fuzzy Control”, 1996.
[13] C. C. Lee, “Fuzzy Logic in Control Systems:Fuzzy Logic Controller-Part I, II”, IEEE Trans. Systems, Man and Cybernetics, Vol. 20, Issue 2, pp. 404-435, 1990.
[14] N. L. Johnson, S. Kotz, N. Balakrishnan, “Continuous Univariate Distributions”, Vol. 2, 1995.
[15] W. Feller, “An Introduction to Probability Theory and Its Applications”, 1971.
[16] B. C. Kuo, “Automatic Control Systems”, Seventh Edition, Prentice Hall, 1997.