| 研究生: |
阮氏垂玲 Linh, Nguyen Thi Thuy |
|---|---|
| 論文名稱: |
應用模擬-優選法提高梯級水庫系統的可靠供水能力與發電量 Improving Firm Water and Energy Yields of a Cascade Reservoir System with Simulation-Optimization Approach |
| 指導教授: |
周乃昉
Chou, N.-F Frederick |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 外文關鍵詞: | water supply, hydropower generation, shortage, multi-purpose, cascade reservoirs, simulation, optimization, Be River Basin |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Resource shortages are having an increasingly severe impact as global trends like rapid population growth, urbanization, economic development, and climate change unfold. Moreover, rising living standards across many regions are also affecting water and energy resources. This entails an urgent requirement to improve water resources management. An important improvement is to transfer water between the different uses of the reservoir system. A compromise between the needs of hydropower generation and the water supply can be negotiated for the reservoir system to reduce the severity of water shortages. The Be River basin in Vietnam was selected as a case study to investigate. The combination of the generalized water allocation simulation model (GWASIM) and the bounded optimization by quadratic approximation (BOBYQA) algorithm was applied to optimize hydropower generation in various water shortage scenarios. The results present optimized hydropower generation policies for cascade reservoirs that would significantly improve the present operating policy in terms of both the water supply and hydropower generation. Moreover, multiple scenarios will provide flexibility to the reservoir operator by giving the relationship between water and energy. Given water supply conditions, the operator will be able to choose among several optimal solutions to ensure greater water resource efficiency in the Be River basin.
1. Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir optimization in water resources: a review. Water resources management, 28(11), 3391-3405.
2. Ali, B., & Kumar, A. (2017). Development of life cycle water footprints for oil sands-based transportation fuel production. Energy, 131, 41-49.
3. Allan, T., Keulertz, M., & Woertz, E. (2015). The water–food–energy nexus: an introduction to nexus concepts and some conceptual and operational problems. International Journal of Water Resources Development, 31(3)
4. Asefa, T. Clayton, J. Adams, A.& Anderson, D. (2014). Performance evaluation of a water resources system under varying climatic conditions: Reliability, Resilience, Vulnerability and beyond. Journal of hydrology, 508, 53-65.
5. Bai, T., Chang, J. X., Chang, F. J., Huang, Q., Wang, Y. M., & Chen, G. S. (2015). Synergistic gains from the multi-objective optimal operation of cascade reservoirs in the Upper Yellow River basin. Journal of Hydrology, 523, 758-767.
6. Barr, R. S. Glover, F.& Klingman, D. (1974). An improved version of the out-of-kilter method and a comparative study of computer codes. Mathematical programming, 7(1), 60-86.
7. Barros, M. T., Tsai, F. T., Yang, S. L., Lopes, J. E., & Yeh, W. W. (2003). Optimization of large-scale hydropower system operations. Journal of Water Resources Planning and Management, 129(3), 178-188.
8. Bellman, R., & Kalaba, R. (1957). Dynamic programming and statistical communication theory. Proceedings of the National Academy of Sciences of the United States of America, 43(8), 749.
9. Benayoun, R., De Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming with multiple objective functions: Step method (STEM). Mathematical programming, 1(1), 366-375.
10. Bhaduri, A. Ringler, C. Dombrowski, I. Mohtar, R.& Scheumann, W. (2015). Sustainability in the water–energy–food nexus. Water Int, 40(5–6), 723–732.
11. Biggs, E. M. et al. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54, 389-397.
12. Brendecke, C. M., DeOreo, W. B., Payton, E. A., & Rozaklis, L. T. (1989). Network models of water rights and system operations. Journal of Water Resources Planning and Management, 115(5), 684-696
13. Cai, X. Wallington, K. Shafiee-Jood, M.& Marston, L. (2018). Understanding and managing the food-energy-water nexus–opportunities for water resources research. Advances in Water Resources, 111, 259-273.
14. Cancelliere, A., Giuliano, G., Ancarani, A., & Rossi, G. (2002). A neural networks approach for deriving irrigation reservoir operating rules. Water resources management, 16(1), 71-88.
15. Castelletti, A. F., Pianosi, F., Quach Thi, Xuan., & Soncini Sessa, Rodolfo. (2012). Assessing water resources management and development in Northern Vietnam, Hydrol. Earth Syst, 16(1), 189–199.
16. Chandramouli, V.& Raman, H. (2001). Multireservoir modeling with dynamic programming and neural networks. Journal of water resources planning and management, 127(2), 89-98.
17. Chang, F. J., Chiang, Y. M., & Chang, L. C. (2007). Multi-step-ahead neural networks for flood forecasting. Hydrological sciences journal, 52(1), 114-130.
18. Chang, F. J., Hui, S. C., & Chen, Y. C. (2002). Reservoir operation using grey fuzzy stochastic dynamic programming. Hydrological processes, 16(12), 2395-2408.
19. Chang, F. J. Lai, J. S.& Kao, L. S. (2003). Optimization of operation rule curves and flushing schedule in a reservoir. Hydrological Processes, 17(8), 1623-1640.
20. Chang, F.-J. Wang, Y.-C.& Tsai, W.-P. (2016). Modelling intelligent water resources allocation for multi-users. Water resources management, 30(4), 1395-1413.
21. Chang, L. C., Chang, F. J., Kao, I. F., Chien, C. L., Lin, Y. C., Chang, C. J., ... & Yang, S. N. (2019). Building an Intelligent Reservoir Operation Decision Support System for Flood and Sedimentation Control. In 3rd International workshop on Sediment Bypass Tunnels.
22. Chang, L.-C.& Chang, F.-J. (2009). Multi-objective evolutionary algorithm for operating parallel reservoir system. Journal of hydrology, 377(1-2), 12-20.
23. Chang, Y. T. Chang, L. C.& Chang, F. J. (2005). Intelligent control for modeling of real‐time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes: An International Journal, 19(7), 1431-1444.
24. Chen, L. (2003). Real coded genetic algorithm optimization of long term reservoir operation 1. JAWRA Journal of the American Water Resources Association, 39(5), 1157-1165.
25. Chen, L., & Chang, F. J. (2007). Applying a real‐coded multi‐population genetic algorithm to multi‐reservoir operation. Hydrological processes: An International journal, 21(5), 688-698.
26. Chini, C. M., Konar, M., & Stillwell, A. S. (2017). Direct and indirect urban water footprints of the United States. Water Resources Research, 53(1), 316-327.
27. Chou, F. N. F., & Wu, C. W. (2015). Stage-wise optimizing operating rules for flood control in a multi-purpose reservoir. Journal of Hydrology, 521, 245-260.
28. Chou, F. N.-F., Wu, C.-W.& Lin, C.-H. (2006). Simulating multi-reservoir operation rules by network flow model Operating Reservoirs in Changing Conditions. ASCE Conference Proceedings, 212:33.
29. Chou, Frederick N.-F. & Linh, Thuy Thi Nguyen (2016). Comparing the Generating Strategies of Hydropower of Cascade Reservoirs to Mitigate the Shortage of Water Supply. Conference Proceedings, 212:33.
30. Chou, F. N. F., Linh, N. T. T., & Wu, C. W. (2020). Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam. Water, 12(4), 938.
31. Chu, J., Zhang, C., Fu, G., Li, Y., & Zhou, H. (2015). Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction. Hydrol. Earth Syst. Sci., 19 (1), 3557-3570
32. Cohon, J. L., & Marks, D. H. (1975). A review and evaluation of multiobjective programing techniques. Water Resources Research, 11(2), 208-220.
33. Crawley, P. D., & Dandy, G. C. (1993). Optimal operation of multiple-reservoir system. Journal of Water resources planning and management, 119(1), 1-17.
34. Dahe, P. D., & Srivastava, D. K. (2002). Multireservoir multiyield model with allowable deficit in annual yield. Journal of Water Resources Planning and Management, 128(6), 406-414.
35. De CD Melo, D., Scanlon, B. R., Zhang, Z., Wendland, E., & Yin, L. (2016). Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil. Hydrology & Earth System Sciences, 20(11).
36. Dhar A, Datta B (2008) Optimal operation of reservoirs for downstream water quality control using linked simulation optimization. Hydrol Process 22(6):842–853
37. Dhaubanjar, S., Davidsen, C., & Bauer-Gottwein, P. (2017). Multi-objective optimization for analysis of changing trade-offs in the Nepalese water–energy–food nexus with hydropower development. Water, 9(3), 162.
38. Draper, A. J., Munevar, A., Arora, S. K., Reyes, E., Parker, N. L., Chung, F. I., & Peterson, L. E. (2004). CalSim: Generalized model for reservoir system analysis. Journal of Water Resources Planning and Management, 130(6), 480-489.
39. El-Gafy, I. K. (2014). System dynamic model for crop production, water footprint, and virtual water nexus. Water Resources Management, 28(13), 4467-4490.
40. Endo, A., Burnett, K., Orencio, P., Kumazawa, T., Wada, C., Ishii, A., Tsurita, I.& Taniguchi, M. (2015). Methods of the water-energy-food nexus. Water, 7(10), 5806-5830.
41. Endo, A., Tsurita, I., Burnett, K.& Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30.
42. Feng, M., Liu, P., Li, Z., Zhang, J., Liu, D., & Xiong, L. (2016). Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. Journal of Hydrology, 543, 344-359.
43. Fowler, H., Kilsby, C.& O'Connell, P. (2003). Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resources Research, 39(8), 344-359.
44. Fredericks, J. W., Labadie, J. W.& Altenhofen, J. M. (1998). Decision support system for conjunctive stream-aquifer management. Journal of water resources planning and management, 124(2), 69-78.
45. Fulkerson, D. R. (1961). An out-of-kilter method for minimal-cost flow problems. Journal of the Society for Industrial and Applied Mathematics, 9(1), 18-27.
46. Fults, D. M., Hancock, L. F., & Logan, G. R. (1976). Practical monthly optimum operations model. J Water Resour Plan Manage Div—ASCE 102(1), 63–76.
47. Guariso, G., Rinaldi, S., & Soncini‐Sessa, R. (1986). The management of Lake Como: A multiobjective analysis. Water Resources Research, 22(2), 109-120.
48. Haddad, O. B., & Marino, M. A. (2007). Dynamic penalty function as a strategy in solving water resources combinatorial optimization problems with honey-bee mating optimization (HBMO) algorithm. Journal of hydroinformatics, 9(3), 233-250.
49. Hall, W. A., Butcher, W. S., & Esogbue, A. (1968). Optimization of the operation of a multiple‐purpose reservoir by dynamic programming. Water Resources Research, 4(3), 471-477.
50. Hashimoto, T., Loucks, D. P.& Stedinger, J. R. (1982). Reliability, resiliency, robustness, and vulnerability criteria for water resource systems. Water Resources Research, 18(1), 7692-7713.
51. Herman, J. D., Zeff, H. B., Reed, P. M., & Characklis, G. W. (2014). Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty. Water Resources Research, 50(10), 7692-7713.
52. Hoekstra, A. Y. (2017). Water footprint assessment: evolvement of a new research field. Water Resources Management, 31(10), 3061-3081.
53. Hsu, N.-S., Cheng, W.-C. Cheng, W.-M. Wei, C.-C.& Yeh, W. W.-G. (2008). Optimization and capacity expansion of a water distribution system. Advances in Water Resources, 31(5), 776-786.
54. Hsu, S.-K. (1995). Shortage indices for water-resources planning in Taiwan. Journal of water resources planning and management, 121(2), 119-131.
55. Huang, W. C., Yuan, L. C.& Lee, C. M. (2002). Linking genetic algorithms with stochastic dynamic programming to the long‐term operation of a multireservoir system. Water Resources Research, 38(12), 119-131.
56. Hurford, A. P., & Harou, J. J. (2014). Balancing ecosystem services with energy and food security-assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana basin. Hydrology and Earth System Sciences, 11(1), 1343-1388.
57. Inas, E.-G., Grigg, N.& Waskom, R. (2017). Water-food-energy: Nexus and non-Nexus approaches for optimal cropping pattern. Water resources management, 31(15), 4971-4980.
58. Jain, S.& Bhunya, P. (2008). Reliability, resilience and vulnerability of a multipurpose storage reservoir/Confiance, résilience et vulnérabilité d'un barrage multi-objectifs. Hydrological sciences journal, 53(2), 434-447.
59. Jalilov, S. M., Keskinen, M., Varis, O., Amer, S., & Ward, F. A. (2016). Managing the water–energy–food nexus: Gains and losses from new water development in Amu Darya River Basin. Journal of Hydrology, 539, 648-661.
60. Jiang, T., Chen, Y. D., Xu, C. Y., Chen, X., Chen, X., & Singh, V. P. (2007). Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of hydrology, 336(3-4), 316-333.
61. Jothiprakash, V., & Shanthi, G. (2006). Single reservoir operating policies using genetic algorithm. Water resources management, 20(6), 917-929.
62. Kang, L., Zhang, S., Ding, Y.& He, X. (2016). Extraction and preference ordering of multireservoir water supply rules in dry years. Water, 8(1), 28.
63. Karamouz, M., Kerachian, R., & Zahraie, B. (2004). Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. Journal of irrigation and drainage engineering, 130(5), 391-402.
64. Kjeldsen, T. R.& Rosbjerg, D. (2004). Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems/Choix d’estimateurs de fiabilité, de résilience et de vulnérabilité pour les analyses de risque de systèmes de ressources en eau. Hydrological sciences journal, 49(5), 365-382.
65. Kuczera, G., & Diment, G. (1988). General water supply system simulation model: WASP. Journal of Water Resources Planning and Management, 114(4), 365-382.
66. Kumar, D. N.& Reddy, M. J. (2006). Ant colony optimization for multi-purpose reservoir operation. Water resources management, 20(6), 879-898.
67. Labadie, J. W. (1995). MODSIM: river basin network flow model for conjunctive stream-aquifer management, program user manual and documentation. Colorado State University, Ft. Colins, Colordo.
68. Labadie, J. W. (2004). Optimal operation of multi reservoir systems: State-of-the-art review. Journal of water resources planning and management, 130(2), 93-111.
69. Labadie, J. W. (2004). Optimal operation of multireservoir systems: state-of-the-art review. Journal of water resources planning and management, 130(2), 93-111.
70. Labadie, J. W., Bode, D. A.& Pineda, A. M. (1986). Network Model for Decision Support in Municipal Raw Water Supply 1. JAWRA Journal of the American Water Resources Association, 22(6), 927-940.
71. Lam, R. H., & Chen, W. (2019). Biomedical Devices: Materials, Design, and Manufacturing. Springer Nature Switzerland AG, Cham, Switzerland, pp. 234.
72. Le Ngo, L., Madsen, H., Rosbjerg, D., & Pedersen, C. B. (2005). Application of MIKE 11 in managing reservoir operation. In Proceedings of the International Conference on Reservoir Operation and River Management (pp. 1-9).
73. Le, M. H., Perez, G. C. Solomatine, D.& Nguyen, L. B. (2016). Meteorological drought forecasting based on climate signals using artificial neural network–a case study in Khanhhoa Province Vietnam. Procedia Engineering, 154, 1169-1175.
74. Li, F.-F.& Qiu, J. (2015). Multi-Objective reservoir optimization balancing energy generation and firm power. Energies, 8(7), 6962-6976.
75. Li, M., Fu, Q., Singh, V. P., Ji, Y., Liu, D., Zhang, C., & Li, T. (2019b). An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Science of the Total Environment, 651, 1416-1434.
76. Li, M., Fu, Q., Singh, V. P., Liu, D., & Li, T. (2019a). Stochastic multi-objective modeling for optimization of water-food-energy nexus of irrigated agriculture. Advances in water resources, 127, 209-224.
77. Liu, J. et al. (2017). Challenges in operationalizing the water–energy–food nexus. Hydrological sciences journal, 62(11), 1714-1720.
78. Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Prentice-Hall, 118(4), 356-370.
79. Maier, H. R., Lence, B. J. Tolson, B. A.& Foschi, R. O. (2001). First‐order reliability method for estimating reliability, vulnerability, and resilience. Water Resources Research, 37(3), 779-790.
80. Majone, B., Bovolo, C. I., Bellin, A., Blenkinsop, S., & Fowler, H. J. (2012). Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain). Water Resources Research, 48(1).
81. Mangasarian, O. L. (1994). Nonlinear programming. Society for Industrial and Applied Mathematics. Water Resources Research, 22(4), 489-498.
82. Miller, L., & Carriveau, R. (2017). Balancing the carbon and water footprints of the Ontario energy mix. Energy, 125, 562-568.
83. Mohan, S.& Raipure, D. M. (1992). Multiobjective analysis of multireservoir system. Journal of water resources planning and management, 118(4), 356-370.
84. Moy, W. S., Cohon, J. L.& ReVelle, C. S. (1986). A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resources Research, 22(4), 489-498.
85. Nagesh Kumar, D.& Janga Reddy, M. (2007). Multipurpose reservoir operation using particle swarm optimization. Journal of water resources planning and management, 133(3), 192-201.
86. Nandalal, K. D. W., & Bogardi, J. J. (2007). Dynamic programming based operation of reservoirs: applicability and limits. Cambridge university press.
87. Needham, J. T., Watkins Jr, D. W., Lund, J. R., & Nanda, S. K. (2000). Linear programming for flood control in the Iowa and Des Moines rivers. Journal of Water Resources Planning and Management, 126(3), 118-127.
88. Neelakantan, T. R., & Pundarikanthan, N. V. (1999). Hedging rule optimisation for water supply reservoirs system. Water resources management, 13(6), 409-426.
89. Nguyen, H.& Shaw, R. (2011). Chapter 8 Drought Risk Management in Vietnam Droughts in Asian monsoon region. Water Resources Research, 18(6), 141-161.
90. Oliveira, R., & Loucks, D. P. (1997). Operating rules for multireservoir systems. Water Resources Research, 33(4), 839-852.
91. Oven‐Thompson, K., Alercon, L.& Marks, D. H. (1982). Agricultural vs. hydropower tradeoffs in the operation of the High Aswan Dam. Water Resources Research, 18(6), 1605-1613.
92. Owen, A., Scott, K., & Barrett, J. (2018). Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 210, 632-642.
93. Ramos, H. M., Teyssier, C., & López-Jiménez, P. A. (2013). Optimization of retention ponds to improve the drainage system elasticity for water-energy nexus. Water resources management, 27(8), 2889-2901.
94. Randall, D., Cleland, L., Kuehne, C. S., Link, G. W. B., & Sheer, D. P. (1997). Water supply planning simulation model using mixed-integer linear programming “engine”. Journal of water resources planning and management, 123(2), 116-124.
95. Rani, D.& Moreira, M. M. (2010). Simulation–optimization modeling: a survey and potential application in reservoir systems operation. Water resources management, 24(6), 1107-1138.
96. Ranjithan, S. R. (2005). Role of evolutionary computation in environmental and water resources systems analysis. Water Resour Plan Manage—ASCE 131(1):1–2
97. Rasul, G.& Sharma, B. (2016). The nexus approach to water–energy–food security: an option for adaptation to climate change. Climate Policy, 16(6), 682-702.
98. Reddy, M. J.& Kumar, D. N. (2006). Optimal reservoir operation using multi-objective evolutionary algorithm. Water resources management, 20(6), 861-878.
99. Reddy, M. J.& Nagesh Kumar, D. (2007). Multi‐objective particle swarm optimization for generating optimal trade‐offs in reservoir operation. Hydrological Processes: An International Journal, 21(21), 2897-2909.
100. Ringler, C., & Nguyen, V. H. (2004). Water allocation policies for the Dong Nai River Basin in Vietnam: an integrated perspective. Environment and Production Technology Division Discussion Paper (127).
101. Sharif, M., & Wardlaw, R. (2000). Multireservoir systems optimization using genetic algorithms: case study. Journal of Computing in civil engineering, 14(4), 255-263.
102. Shiau, J.-T.& Lee, H. (2005). Derivation of optimal hedging rules for a water-supply reservoir through compromise programming. Water resources management, 19(2), 111-132.
103. Si, Y., Li, X., Yin, D., Li, T., Cai, X., Wei, J., & Wang, G. (2019). Revealing the water-energy-food nexus in the Upper Yellow River Basin through multi-objective optimization for reservoir system. Science of the Total Environment, 682, 1-18.
104. Simonovic, S. P.& Mariño, M. A. (1980). Reliability programing in reservoir management: 1. Single multipurpose reservoir. Water Resources Research, 16(5), 844-848.
105. Srdjevic, B., Medeiros, Y.& Faria, A. (2004). An objective multi-criteria evaluation of water management scenarios. Water resources management, 18(1), 35-54.
106. Stamou, A.-T.& Rutschmann, P. (2018). Pareto optimization of water resources using the nexus approach. Water resources management, 32(15), 5053-5065.
107. Stockholm Environment Institute (SEI). (1999). WEAP: Water evaluation and planning system.
108. Suiadee W, Tingsanchali T (2007) A combined simulation-genetic algorithm optimization model for optimal rule curves of a reservoir: a case study of the Nam Oon Irrigation Project, Thailand. Hydrol Process 21(23), 3211–3225.
109. Tauxe, G. W., Inman, R. R.& Mades, D. M. (1979). Multiobjective dynamic programing with application to a reservoir. Water Resources Research, 15(6), 1403-1408.
110. Teegavarapu, R. S., & Simonovic, S. P. (2000). Short-term operation model for coupled hydropower reservoirs. Journal of water resources planning and management, 126(2), 98-106.
111. Tilmant, A., Vanclooster, M., Duckstein, L.& Persoons, E. (2002). Comparison of fuzzy and nonfuzzy optimal reservoir operating policies. Journal of water resources planning and management, 128(6), 390-398.
112. Vedula, S., Mujumdar, P. P., & Sekhar, G. C. (2005). Conjunctive use modeling for multicrop irrigation. Agricultural Water Management, 73(3), 193-221.
113. Velázquez, E., Madrid, C.& Beltrán, M. J. (2011). Rethinking the concepts of virtual water and water footprint in relation to the production–consumption binomial and the water–energy nexus. Water resources management, 25(2), 743-761.
114. Vu, M. T., Raghavan, S. V., Pham, D. M.& Liong, S.-Y. (2015). Investigating drought over the Central Highland, Vietnam, using regional climate models. Journal of hydrology, 526, 265-273.
115. Vu-Thanh, H., Ngo-Duc, T.& Phan-Van, T. (2014). Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period. Theoretical and applied climatology, 118(3), 367-375.
116. Wardlaw, R., & Sharif, M. (1999). Evaluation of genetic algorithms for optimal reservoir system operation. Journal of water resources planning and management, 125(1), 25-33.
117. Wurbs, R. A., & Karama, A. S. (1995). Salinity and water-supply reliability. Journal of Water Resources Planning and Management, 121(5), 352-358.
118. Xu, C., Xu, Z., & Yang, Z. (2020). Reservoir operation optimization for balancing hydropower generation and biodiversity conservation in a downstream wetland. Journal of cleaner production, 245, 118885.
119. Yakowitz, S. (1982). Dynamic programming applications in water resources. Water resources research, 18(4), 673-696.
120. Yang, C.-C., Chang, L.-C., Chen, C.-S.& Yeh, M.-S. (2009). Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water resources management, 23(3), 417-437.
121. Yang, C.-C., Chang, L.-C., Yeh, C.-H.& Chen, C.-S. (2007). Multiobjective planning of surface water resources by multiobjective genetic algorithm with constrained differential dynamic programming. Journal of water resources planning and management, 133(6), 499-508.
122. Yang, T., Gao, X., Sellars, S. L.& Sorooshian, S. (2015). Improving the multi-objective evolutionary optimization algorithm for hydropower reservoir operations in the California Oroville–Thermalito complex. Environmental Modelling & Software, 69, 262-279.
123. Yeh, W. W. G. (1985). Reservoir management and operations models: A state‐of‐the‐art review. Water resources research, 21(12), 1797-1818.
124. Yerram Reddy, A. R.& Wurbs, R. A. (1996). Water resources allocation based on network flow programming. Civil Engineering Systems, 13(1), 75-87.
125. Young, G. K. (1967). Finding reservoir operating rules. Journal of the Hydraulics Division, 93(6), 297-322.
126. Yu, P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1-4), 161-175.
127. Yurtal, R., Seckin, G., & Ardiclioglu, G. (2005). Hydropower optimization for the lower Seyhan system in Turkey using dynamic programming. Water international, 30(4), 522-529.
128. Zhou, Y., Guo, S., Xu, C. Y., Liu, D., Chen, L., & Ye, Y. (2015). Integrated optimal allocation model for complex adaptive system of water resources management (I): methodologies. Journal of Hydrology, 531, 964-976.
129. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I., & Levin, S. A. (2012). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences, 109(15), 5609-5614.
130. Zongxue, X., Jinno, K., Kawamura, A., Takesaki, S.& Ito, K. (1998). Performance risk analysis for Fukuoka water supply system. Water resources management, 12(1), 13-30.