簡易檢索 / 詳目顯示

研究生: 李晉
Li, Chin
論文名稱: 牙科鑄鈦用包埋材製程及性質研究
Process and Properties of Investment Material for Titanium Dental Casting
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 牙科包埋材牙科鈦金屬鑄造膨脹率氧化
外文關鍵詞: dental investment material, titanium dental casting, expansion ratio, oxidation
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦金屬具優良生物相容性、抗腐蝕性以及比強度,在牙科應用十分普及。
    雖然鈦金屬具優良生物相容性以及材料強度,但鈦金屬於鑄造時的高熔點以及高溫時的高反應性,使傳統包埋材多在鑄造過程中容易與鈦發生反應,導致最終鑄件性質發生改變或精密度不佳。因此,開發適用於鈦金屬鑄造之包埋材已成為研究之重點。
    本研究基於基材A之包埋材性質進行改善,藉由調整基材A、基材B、添加劑D、添加劑F添加量以及燒結參數,使包埋材硬化時間減少,膨脹率提升。此外,添加添加劑G作為抗氧化劑,觀察添加劑G的添加是否能減少鈦金屬鑄造後氧化的情形,期望能提供未來包埋材研究開發之參考。

    The research is divided into two parts. For the first part, our goal is to shorten the setting time and increase the expansion ratio. Second part is to decrease the oxidation of casting. We adjusted the wt% of B in order to increase the production of spinel, which is used to increase the expansion ratio. And we adjusted the wt% of D to shorten the setting time. Then we added G, looking forward to decrease the oxidation of casting. Results of first part showed that, with increasing wt% of B, the fluidity is 175mm - 201mm, setting time 17min - 22min, before sintered compressive strength 5.45 MPa - 31.2 MPa, after sintered compressive strength 10.79 MPa - 30.21 MPa and expansion ratio 0.81% - 1.68%. Besides, increasing D effectively shortened setting time. For the second part, by adding G, we observed that it reduced expansion ratio. Then we used investment material which contains q wt% - u wt% of G for casting. The results showed that r wt% of G has the largest area of golden oxide layer. The final component results fluidity 158mm, setting time 8min, before sintered strength 19.59 MPa, after sintered compressive strength 16.9 MPa and expansion ratio 1.16%.

    中文摘要 Ⅰ 英文延伸摘要 Ⅱ 致謝 VI 總目錄 Ⅶ 表目錄 Ⅹ 圖目錄 Ⅺ 第一章 緒論 1 1.1 前言 1 1.2 義齒簡介 1 1.3 脫蠟鑄造法 2 1.4 研究目的以及動機 3 第二章 文獻回顧與理論基礎 4 2.1 牙科用包埋材性質需求 4 2.2 傳統牙科包埋材組成 5 2.2.1 耐火材料 5 2.2.2 黏結材料 7 2.2.3 其他化學藥劑 10 2.3 應用於鑄造鈦與鈦合金之新型牙科包埋材性質探討 10 2.3.1 鈦與鈦合金鑄造時的問題與解決方案 10 2.3.2 商用鈦以及鈦合金包埋材之應用 11 2.4 無矽包埋材之原料介紹 13 2.4.1 耐火材料 13 2.4.2 基材B 16 2.4.3 添加劑之選用 20 第三章 材料與實驗方法 24 3.1 實驗流程圖 24 3.2 材料選用 25 3.2.1 耐火材料 25 3.2.2 黏結材料 25 3.2.3 其他化學添加劑 26 3.3 實驗方法 28 3.3.1 流動性測試 28 3.3.2 硬化時間測試 30 3.3.3 抗壓強度測試 32 3.3.4 線熱膨脹率測試 36 3.3.5 鑄造測試 37 第四章 結果與討論 38 4.1 不同黏結材料添加量之影響 39 4.1.1 不同黏結材料添加量對於流動性之影響 39 4.1.2 不同黏結材料添加量對於硬化時間之影響 40 4.1.3 不同黏結材料添加量對於生胚抗壓強度之影響 41 4.1.4 不同黏結材料添加量對於燒結後抗壓強度之影響 42 4.1.5 不同黏結材料添加量對於膨脹率之影響 43 4.2 不同添加劑D添加量之影響 44 4.3 不同燒結溫度以及持溫時間之影響 48 4.4 不同添加劑G添加量之影響 50 4.5 鑄造測試 54 4.5.1 SEM-EDS 分析 57 4.6 不同黏結材料添加量對於氧化以及其他性質之影響 62 4.6.1 不同黏結材料添加量對於氧化以及其他性質之影響 63 4.7 不同添加劑D添加量對於流動性及硬化時間之影響 64 4.8 不同燒結參數對於燒結後抗壓強度及膨脹率之影響 66 4.9 不同添加劑F添加量對於膨脹率之影響 68 第五章 結論 71 第六章 參考文獻 73

    1. Antonovič, V., Kerienė, J., Boris, R., and Aleknevičius, M.: The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure, Procedia Engineering, 57, 99-106, 2013.
    2. Bensted, J.: Scientific aspects of high alumina cement, Cement Wapno Beton, R. 9/71, nr 3, 2004.
    3. Carter, R. E.: Mechanism of Solid-state Reaction Between Magnesium Oxide and Aluminum Oxide and Between Magnesium Oxide and Ferric Oxide, Journal of the American Ceramic Society, 44, 3, 116-120, 1961.
    4. Cheng, A. C.: Process and properties of investment material for titanium casting(Ⅱ), 2019.
    5. Chiu, C. W.: Process and properties of MgO based investment material for dental casting, 2018.
    6. Choi, B.-J., Lee, S., and Kim, Y.-J.: Alpha-Case Reduction Mechanism of Titanium Powder-Added Investment Molds for Titanium Casting, Journal of Materials Engineering and Performance, 23, 4, 1415-1423, 2014.
    7. Christensen, G. J.: Clinical and research advancements in cast-gold restorations, The Journal of Prosthetic Dentistry, 25, 1, 62-68, 1971.
    8. Darvell, B. W.: Materials Science For Dentistry, Elsevier Science & Technology, San Diego, 465-483 pp., 2018.
    9. F, G.-N.: Hydration kinetics of calcium aluminate cement in presence of Li2CO3, in, edited by: C. H. Fentiman, K. L. S., R. J. Mangabhai, Cement and Concrete Science, 181-196, 2008.

    10. Ganesh, I.: A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, International Materials Reviews, 58, 2, 63-112, 2013.
    11. Guilin, Y., Nan, L., Yousheng, L., and Yining, W.: The effects of different types of investments on the alpha-case layer of titanium castings, The Journal of Prosthetic Dentistry, 97, 3, 157-164, 2007.
    12. Hung, C.-C., Hou, G.-L., Tsai, C.-C., and Huang, C.-C.: Effect of Zirconia-Modified Magnesia Investment on the Casting of Pure Titanium, The Kaohsiung Journal of Medical Sciences, 19, 3, 121-125, 2003.
    13. Hung, C. C., Lai, P. L., Tsai, C. C., Huang, T. K., and Liao, Y. Y.: Pure titanium casting into titanium-modified calcia-based and magnesia-based investment molds, Materials Science and Engineering: A, 454-455, 178-182, 2007.
    14. Ida, K., Togaya, T., Tsutsumi, S., and Takeuchi, M.: Effect of magnesia investments in the dental casting of pure titanium or titanium alloys, Dental Materials Journal, 1, 1, 8-21, 1982.
    15. Kırca, Ö.: Temperature effect on calcium aluminate cement based composite binders, 2006.
    16. Kostić, E., Bošković, S., and Kiš, Š.: Influence of fluorine ion on the spinel synthesis, Journal of Materials Science Letters, 1, 12, 507-510, 1982.
    17. Lai, P.-L., Chen, W.-C., Wang, J. C., Huang, T.-K., and Hung, C.-C.: A newly developed calcia/titanium modified magnesia-based investment mold for titanium casting, Materials Science and Engineering: C, 31, 2, 144-150, 2011.
    18. Liu, C. H.: Development of an investment material for titanium casting, 2018. 
    19. Lloyd, C.: Dental investment materials for casting metals and alloys, in: Dental Biomaterials, 475-501, 2008.
    20. Maitra, S., Bose, S., Bandyopadhyay, N., and Roychoudhury, A.: Dehydration kinetics of calcium aluminate cement hydrate under non-isothermal conditions, Ceramics International, 31, 3, 371-374, 2005.
    21. Miyakawa, O., Watanabe, K., Okawa, S., Nakano, S., Kobayashi, M., and Shiokawa, N.: Layered structure of cast titanium surface, Dent Mater J, 8, 2, 175-185, 1989.
    22. Miyazaki, T., Tani, Y., Tamaki, Y., Suzuki, E., and Miyaji, T.: Casting of Titanium with Calcia Investment, Shika zairyō, kikai = Journal of the Japanese Society for Dental Materials and Devices, 6, 437-440, 1987.
    23. Mori, T., Jean-Louis, M., Yabugami, M., and Togaya, T.: The effect of investment type on the fit of cast titanium crowns, Australian Dental Journal, 39, 6, 348-352, 1994.
    24. Mori, T., McAloon, J., and Aghajani, F.: Gypsum-bonded Investment and Dental Precision Casting (I) Two Investments, Dental Materials Journal, 22, 3, 412-420, 2003.
    25. Nishimura, F., Watari, F., Nakamura, H., Fukumoto, R., and Morita, N.: Casting accuracy and shrinkage of titanium castings made with zirconia investments, Shika Zairyo Kikai, 9, 6, 850-857, 1990.
    26. Niziurska, M., Małolepszy, J., and Malata, G.: The Influence of Lithium Carbonate on Phase Composition of Calcium Aluminate Cement Paste, Procedia Engineering, 108, 363-370, 2015.

    27. Nogueira, F., Fais, L. M. G., Fonseca, R. G., and Adabo, G. L.: The influence of short-heating-cycle investments on the quality of commercially pure titanium castings, The Journal of Prosthetic Dentistry, 104, 4, 265-272, 2010.
    28. Okabe, T., and Hero, H.: The Use of Titanium in Dentistry, Cells and Materials, 5, 2, 9, 1995.
    29. Qie, Y.-N., Lü, Q., Zhang, X.-S., and Liu, X.-J.: Effect of TiO2 content on microstructure of sinter, 2015.
    30. Scrimgeour, S. N., Chudek, J. A., and Lloyd, C. H.: The determination of phosphorus containing compounds in dental casting investment products by 31P solid-state MAS-NMR spectroscopy, Dental Materials, 23, 4, 415-424, 2007.
    31. Stark, D., Morgan, B., and Okamoto, P.: Eliminating or Minimizing Alkali Silica Reactivity, 1993.
    32. Takahashi, H., Miyazaki, T., and Kawawa, T.: Accuracy of titanium cast crowns obtained from calcia base mold, Clinical Materials, 16, 3, 155-160, 1994.
    33. Togaya, T.: Studies on magnesia investment for casting of titanium : improvement of fitness on castings by utilizing an expansion due to oxidation of additive Zr powder in the investment, J J Dent Mater, 4, 334-349, 1985.
    34. Wei, L., Gaoming, W., Tao, Y., and Zinimg, W.: Research fluorosilicate for the enhanced performance and mechanism of concrete, 2015.

    35. Yan, M., and Takahashi, H.: Gypsum-bonded Alumina Dental Investment for High-fusing Casting, Dental Materials Journal, 17, 3, 174-185, 1998.
    36. Young, J. F.: 土木工程材料 : 科學與應用, 五南圖書出版股份有限公司, 2000.
    37. Zhang, Z., Tamaki, Y., Hotta, Y., and Miyazaki, T.: Novel method for titanium crown casting using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded investment, Dental Materials, 22, 7, 681-687, 2006.
    38. 賴耿陽: 鑄造技術用書9:特殊鑄模, 復漢出版社, 台南市, 1977.
    39. 鍾國雄: 牙科材料學, 合記圖書發行, 2004.

    無法下載圖示 校內:2025-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE