簡易檢索 / 詳目顯示

研究生: 曾傳銘
Tseng, Chuan-Ming
論文名稱: 雙相不銹鋼之應力腐蝕破裂及腐蝕疲勞裂縫生長行為研究
Stress Corrosion Cracking and Corrosion Fatigue Crack Growth Behaviors of Duplex Stainless Steels
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 207
中文關鍵詞: 雙相不銹鋼應力腐蝕破裂腐蝕疲勞破裂慢應變速率拉伸試驗
外文關鍵詞: Duplex Stainless Steel, Stress Cracking Cracking, Corrosion Fatigue Cracking, Nitrogen, Slow Strain Rate Testing
相關次數: 點閱:149下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要探討22%Cr雙相不銹鋼在含氯離子水溶液中之應力腐蝕破裂(SCC)及腐蝕疲勞裂縫(CFC)生長性質,同時比較氮含量的不同對22%Cr雙相不銹鋼之應力腐蝕破裂敏感性及腐蝕疲勞裂縫生長速率的影響。此外,以316L沃斯田體系不銹鋼及430肥粒體系不銹鋼作為對照組,藉以探討不同的晶體結構組織,於應力腐蝕破裂及腐蝕疲勞裂縫生長行為上所扮演的角色。
    實驗結果顯示22%Cr雙相不銹鋼中氮含量由0.103wt%增加至0.195wt%,其拉伸強度及延性皆會隨之增加。再者,雙相不銹鋼中的 相的硬度會較 相為高,且兩相的硬度亦隨氮含量的增加而增加,這主要是因為氮所提供之固溶強化的效果。此外,雙相不銹鋼中 相的比例及大小皆會隨著氮含量的增加而增加
    22% Cr雙相不銹鋼在100 C、相同莫耳濃度之不同陽離子氯化物水溶液中,其Enp值大小依序為NaCl CaCl2 MgCl2。然而,雙相不銹鋼在高溫氯離子溶液中的Enp值皆會隨著氮含量的增加而增加,且隨著溶液中氯離子濃度及溫度的提高,其增加的幅度越不明顯。至於雙相不銹鋼的蝕孔形態及位置,在NaCl水溶液中傾向成核於 相或 / 相界,而往 相來成長;在MgCl2水溶液中則傾向成核於 相。然而,在CaCl2水溶液中,雙相不銹鋼的局部腐蝕形態則有別一般的孔蝕,而是以 相的選擇性腐蝕形式出現。
    慢應變拉伸試驗的結果顯示:22%Cr雙相不銹鋼在80 C、3.5wt% NaCl水溶液中,並無SCC的出現,但卻發生動態應變時效(DSA)的現象。然而,當氮含量為0.153wt%時,雙相不銹鋼於100 C、40wt% CaCl2水溶液中,應變速率為4.1 10-7 s-1下,其抵抗SCC的能力最差,再者,氮含量對SCC敏感性的影響主要與滑移溶解機制及肥粒體相的選擇性溶解有關。此外,陽離子對各個不銹鋼在氯離子水溶液中之SCC敏感性的影響程度,對22%Cr雙相不銹鋼而言,依序為Mg2+>Ca2+>Na+;但對沃斯田體系不銹鋼及肥粒體系不銹鋼而言,則依序為Mg2+ Ca2+>Na+。
    由疲勞裂縫生長試驗結果可發現,在80 C、3.5wt% NaCl水溶液中,腐蝕疲勞生長速率以430肥粒體系不銹鋼最高,而其腐蝕疲勞破裂以劈裂形態的脆性破裂為主。對22%Cr雙相不銹鋼而言,腐蝕疲勞裂縫生長主要與肥粒體相的脆性破裂現象有關。當負荷頻率為1Hz時,不論在空氣中或在3.5wt%NaCl(80 C)水溶液中,氮含量的改變對雙相不銹鋼的疲勞裂縫生長速率影響並不顯著。然而,在3.5wt%NaCl(80 C)水溶液中,負荷頻率為0.1Hz時,雙相不銹鋼的疲勞裂縫生長速率,於氮含量為0.103wt%時,會明顯較其他氮含量之雙相不銹鋼來的大。

    Abstract
    Stress corrosion cracking (SCC) and corrosion fatigue cracking (CFC) behaviors of 22%Cr duplex stainless steel (DSS) were investigated. Slow strain rate testing (SSRT) and fatigue crack growth (FCG) rate measurement were employed in chloride solutions at high temperature to evaluate the SCC and CFC susceptibility. The effects of nitrogen content, phase, and environment in DSS on SCC and CFC behaviors are also discussed in this study. In addition, AISI 316L austenitic stainless steel (SS) and AISI 430 ferritic SS were also used for comparison purpose. The experimental results showed that the tensile strength and ductility of 22%Cr DSS increased with increasing amount of nitrogen content (in range of 0.103 to 0.195 wt%). Furthermore, nitrogen also caused increase of the microhardness of both ferrite and austenite. Similarly, nitrogen addition also increased the volume percentage and phase size of austenite in DSSs.
    The pitting nucleation potential (Enp) of 22%Cr DSS after potentiodynamic polarization measurement in three chloride solutions with different cations at 100°C varies in following order: NaCl CaCl2 MgCl2. In 40wt% CaCl2 solution at 100°C, selective corrosion of ferritic phase in 22%Cr DSS was observed. Besides, pits in NaCl solutions could initiate in phase or at the boundary between and phase, and propagated in phase. On contrary, in 34wt% MgCl2 solution at 100°C, pits initiated preferentially in phase. However, the Enp increased with increasing nitrogen content in DSSs in all hot chloride solutions employed.
    The slow strain rate testing results indicated that 22% Cr DSSs were resistant to SCC in 3.5 wt% NaCl solution at 80°C under two strain rates employed. But, dynamic strain aging occurred in 22% Cr DSSs during SSRT in preceding solution at higher strain rate. In hot 40wt% CaCl2 solution at lower strain rate, 22%Cr DSS with nitrogen content of 0.153wt% was more susceptible to SCC. However, slip dissolution and selective corrosion of ferrite participated in SCC process of 22%Cr DSSs. The ability of cation to promote SCC in chloride solution changes in the following order: Mg2+ Ca2+ Na+, for 22%Cr DSS; Mg2+ Ca2+ Na+, for 316L austenitic SS and 430 ferritic SS.
    The FCG rate measurement results indicated that the FCG rate in 3.5wt% NaCl solution at 80°C was found to be the highest for 430 ferritic SS. The high FCG rate in 430 ferritic SS was associated with cleavage-like brittle failure. For 22%Cr DSS, accelerated FCG in hot NaCl solution was mainly attributed to brittle failure of the constituent ferrite phase. Furthermore, the results revealed that nitrogen in the range of 0.103 to 0.195 wt% did not significantly affect the FCG rate of 22% Cr DSS in air and in 3.5 wt% NaCl solution at 80°C, at 1 Hz. However, at a frequency of 0.1 Hz and in 3.5 wt% NaCl solution at 80°C, a higher FCG rate was found in the low-N DSS (0.103 wt% N) as compared with those with high nitrogen content (> 0.153 wt% N). As the nitrogen content increased, the content of ferrite phase, which was susceptible to hydrogen embrittlement, in DSS decreased. As a result, the corrosion fatigue crack propagation rate was reduced.

    總 目 錄 中文摘要 I 英文摘要 III 誌謝 VI 總目錄 VII 表目錄 X 圖目錄 XIII 第一章、前言 1 第二章、文獻回顧及背景資料 4 2-1雙相不銹鋼之簡介 4 2-2雙相不銹鋼的應力腐蝕破裂性質 5 2-3 雙相不銹鋼的腐蝕疲勞破裂性質 9 第三章、研究方法與步驟 16 3-1實驗材料 16 3-2金相組織觀察 16 3-2-1相比例鑑定 17 3-2-2兩相化學組成分析 18 3-2-3兩相微硬度量測 19 3-3電化學性質分析 19 3-3-1動電位極化曲線量測 19 3-3-2定電位測試 21 3-3-3鈍化膜組成分析 21 3-4應力腐蝕破裂性質評估 22 3-5腐蝕疲勞裂縫生長試驗 23 第四章、結果與討論 35 4-1氮含量對雙相不銹鋼微結構之影響 35 4-1-1相比例及大小 37 4-1-2兩相的化學組成 43 4-1-3兩相的強度 46 4-2雙相不銹鋼在水溶液中之電化學性質分析 74 4-2-1不同結晶結構不銹鋼之動電位極化曲線比較 74 4-2-2不同氮含量雙相不銹鋼之動電位極化曲線比較 79 4-2-3鈍化性質 82 4-2-4孔蝕形態及成核位置 87 4-3雙相不銹鋼在水溶液中之應力腐蝕破裂性質研究 113 4-3-1不同結晶結構不銹鋼在含氯離子水溶液中之應力腐蝕破裂行為 114 4-3-2氮含量對雙相不銹鋼在含氯離子水溶液中之應力腐蝕破裂性質影響 134 4-4雙相不銹鋼在水溶液中之腐蝕疲勞裂縫生長性質研究 166 4-4-1不同結晶結構不銹鋼在含氯離子水溶液中之腐蝕疲勞裂縫生長性質 166 4-4-2氮含量對雙相不銹鋼在含氯離子水溶液中之腐蝕疲勞裂縫生長性質影響 171 第五章、結論 189 參考文獻 192 自述 201 附錄 204

    參 考 文 獻
    1. H. S. Isaacs, B. Vyas and M. W. Kendig, Corrosion, vol.38, p.130, 1982.
    2. A. Garner, Corrosion, vol.41, p.587, 1985.
    3. T. G. Gooch, in "Future Developments of Metals and Ceramics", eds. by J. A. Charles, G. W. Greenwood and G. C. Smith, The Institute of Materials, p.229, 1992.
    4. H. Krebs, Stainless Steels world, March, p.24, 1996.
    5. C. Agarwal, Material Selection and Design, p.63, 1988.
    6. B. Leffler, Material Selection and Design, p.60, 1990.
    7. H. D. Solomon and T. M. Devine Jr., in "Duplex Stainless Steels", ed. by R. A. Lula, ASTM, p.693, 1982.
    8. R. M. Davison and J. D. Redmond, Materials and Design, vol.12, p.187, 1991.
    9. A. J. Sedriks, Corrosion, vol.45, p.510, 1989.
    10. W. -T. Tsai and M. -S. Chen, Corrosion Science, vol.42, p.545, 2000.
    11. Chuan-Ming Tseng, Horng-Yih Liou, and Wen-Ta Tsai, Metallurgical and Materials Transactions A, vol.34A, p.95, 2003.
    12. Chuan-Ming Tseng and Wen-Ta Tsai, Materials Chemistry and Physics, vol.84, p.162, 2004.
    13. Chuan-Ming Tseng, Horn-Yih Liou, and Wen-Ta Tsai, in: Proceeding of 55th Annual Conference of NACE (CORROSION/2000), Orlando, Florida, USA, March 26-31, 2000, NACE, Houston, TX, 2000, paper #00214.
    14. A. Miyasaka, T. Kanamara and H. Ogawa, Corrosion, vol.52, p.592, 1996.
    15. A. Latinen and H. Hanninen, Materials Science and Technology, vol.12, no.12, p.1064, 1996.
    16. P. Kangas and J. M. Nicholls, Werkstoffe und Korrosion, vol.46, p.354, 1995.
    17. 陳世英, 張德康, 不銹鋼應力腐蝕破裂, 科學出版社, 中國, p.201, 1977.
    18. T. Magnin, J. M. Lardon and L. Condreuse, in "Low Cycle Fatigue", eds. by H. D. Solomon, G.R. Halford, L. R. Kaisand and B. N. Leis, ASTM STP942, ASTM, Philadelphia, p.812, 1994.
    19. K. N. Krishnan, International Journal of Fracture, vol.88, p.205, 1997.
    20. P. R. Levey and A. Van Bennekom, Corrosion, vol.51, p.911, 1995.
    21. R. E. Avery, Chemical Engineering Process, vol.87, no.1, p.70, 1991.
    22. B. Larsson, H. Gripenberg and R. Mellstrom, in "Stainless Steels'84", ed. by G. L. Dunlop, Chalmers University of Technology, Goteborg, Sweden, 3-4 Sept. ,1984, The Institute of Metals, London, UK, p.452, 1985.
    23. H. Benneck, Korrosion u. Metallschutz, vol.20, no.4, p.133, 1944.
    24. J. W. Flowers, F. H. Beck and M. G. Fontana, Corrosion, vol.19, p.376, 1975.
    25. M. Kowaka, H. Nagano, T. Kudo and K. Yamanaka, Corrosion Engineering, vol.30, p.218, 1981.
    26. S. Shimodaira, M. Takano, Y. Takizawa and H. Kamide, in "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloy", ed. by R. W. Staehle et al., Unieux-Firminy, France, 12-18 June, 1973, NACE-5, p.1007, 1977.
    27. J. -O. Nilsson, Materials Science and Technology, vol.8, no.8, p.685, 1992.
    28. S. Bernhardsson, J. Oredsson and C. Martenson, in "Duplex Stainless Steels", ed. by R. A. Lula, ASM, St. Louis, Missouri, 1982, p.267, 1982.
    29. 林志宏, "硫代硫酸根對不銹鋼於氯化鈉溶液中之孔蝕及應力腐蝕破裂影響研究", 碩士論文, 國立成功大學材料科學及工程研究所, 1995.
    30. Jyh-Horng Lin, Hsing Chang, Wen-Ta Tsai, and Ju-Tung Le, 9th Asian-Pacific Corrosion Control Conference, Kaohsiung, Taiwan, November 5-10, 1995, paper #174.
    31. 林志宏, 張行, 蔡文達, 李汝桐, 中華民國防蝕工程學會民國八十四年度年會論文集, 台北市,p. 23, 1995.
    32. 陳明賢, "雙相不銹鋼在高濃度氯化鈉溶液中之孔蝕及應力腐蝕性質研究", 碩士論文, 國立成功大學材料科學與工程研究所, 1999.
    33. Wen-Ta Tsai, Ming-Shan Chen, Hsing Chang, and Ju-Tung Lee, 13th International Corrosion Conference, Melbourne, Australia, November 25-29, 1996, paper#241.
    34. 陳明賢,蔡文達,李汝桐, 中華民國防蝕工程學會民國八十四年度年會論文集, 台北市, p. 29, 1995
    35. H. J. Dejong, Corrosion, vol.34, p.34, 1978.
    36. R. N, Parkins, in "Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications", ed. by R. D. Kane, ASTM STP 1210, ASTM, Philadelphia, PA, 1993, p.7, 1993.
    37. G. R. Hoey, R. W. Revie and R. R. Ramsingh, Materials Performance, vol.26, no.10, p.42, 1987.
    38. D. R. Mclntyre, R. D. Kane and S. M. Wilhelm, Corrosion, vol.44, no.12, p.920, 1988.
    39. R. P. Gangloff, in "Corrosion Tests and Standards: Application and Interpretation", ed. by R. Baboian, Chap.26, p.253, 1995.
    40. G. Degallaix, A. Seddouki and S. Degallaix, in "Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials-3", p.76, 1992.
    41. T. J. Marrow and J. E. King, Fatigue and Fracture of Engineering Materials and Structure, vol.17, no.7, p.761, 1994.
    42. Chuan-Ming Tseng, Horng-Yih Liou, and Wen-Ta Tsai, Materials Science and Engineering A, vol.A344, p.190, 2003.
    43. J. -B. Vogt, J. Foct, C. Regnard, G. Robert and J. Dhers, Metallurgical Transactions A, vol.22, p.2385, 1991.
    44. M. Ait Bassidi, J. Masounave and J. I. Dickson, in "Duplex Stainless Steels", ed. by R. A. Lula, ASM, St. Louis, Missouri, 1982, p.445, 1982.
    45. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., chap. 10, p.324, 1978.
    46. 劉宏義, "合金元素及製成參數對雙相不銹鋼機械性質及耐蝕性質影響之研究", 博士論文, 國立成功大學材料科學及工程學系, 2002.
    47. Horng-Yih Liou, Yeong-Tsuen Pan, Rong-Iuan Hsieh, and Wen-Ta Tsai, Journal of. Materials Engineering and Performance, vol. 10, no. 2, p. 231, 2001.
    48. Horng-Yih Liou, Rong-Iuan Hsieh, Wen-Ta Tsai, Materials Chemistry and Physics, vol. 74, p. 33, 2002.
    49. Horng-Yih Liou, Rong-Iuan Hsieh, and Wen-Ta Tsai, Corrosion Science, vol.44, p.2841, 2002.
    50. 蔡坤銘, "異相不銹鋼之偶合電化學性質的研究", 碩士論文, 國立成功大學材料科學及工程學系, 2002.
    51. W. -T. Tsai, K. -M. Tsai and C. -J. Lin, in: Proceeding of 58th Annual Conference of NACE (CORROSION/2003), San Diego, CA, USA, 16-20 March, 2003, NACE, Houston, TX, 2003, paper#03398.
    52. R. Nemoto, K. Osozaw, K. Osada and M. Tsuda, in "Stainless Steels'84", ed. by G. L. Dunlop, Chalmers University of Technology, Goteborg, Sweden, 3-4 Sept. ,1984, The Institute of Metals, London, UK, p.149, 1984.
    53. B. Verlinden, K. Cuypers and E. Aernoudt, in "Duplex Stainless Steels'91", vol.2, Beaune France, 28-30 Oct. 1991, p.711, 1991.
    54. F. B. Pickering, in "Stainless Steels'84", ed. by G. L. Dunlop, Chalmers University of Technology, Goteborg, Sweden, 3-4 Sept. ,1984, The Institute of Metals, London, UK, p.12, 1985.
    55. R. Mundt and H. Hoffmeister, in "Stainless Steels'84", ed. by G. L. Dunlop, Chalmers University of Technology, Goteborg, Sweden, 3-4 Sept. ,1984, The Institute of Metals, London, UK, p.315, 1985.
    56. A. L. Schaeffler, Metal Progress, vol. 56, p.680, 1949.
    57. G. M. Gordon, in "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys", ed. by R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, Unieux-Firminy, France, 12-18 June, 1973, NACE, p.893, 1977.
    58. E. A. Schoefer, Welding Journal, p.10s, 1974.
    59. Metal Handbook, vol.15, "Casting", ASM, p.725, 1988.
    60. W. T. DeLong, Metal Progress, vol. 77, p.98, 1960.
    61. C. J. Long and W. T. DeLong, Welding Journal, vol.52, p.281s, 1973.
    62. J. Rawers and A. V. Petty Jr., Journal of Materials Science, vol.28, p.3489, 1993.
    63. J. Rawers, J. Bennett, R. Doan and J. Siple, Acta Metallurgical Transactions, vol.40, no.6, p.1195, 1992.
    64. J. C. Rawers, N. A. Gokcen and R. D. Pehlke, Metallurgical Transactions, vol.24A, p.73, 1993.
    65. K. Frisk, Metallurgical Transactions, vol.23A, p.1271, 1992.
    66. J. W. Simmons, D. G. Atteridge and J. Rawers, Journal of Materials Science, vol.27, p.6105, 1992.
    67. O. P. Sinha, A. K. Singh, C. Ramachandra and R. C. Gupta, Metallurgical Transactions, vol.23A, p.3317, 1992.
    68. I. Tamura, Y. Tomota, A. Akao, Y. Yamaoka, M. Ozawa and S. Kanatani, Transactions of the Iron and Steel Institute of Japan, vol.13, p.283, 1973.
    69. P. Pant, P. Dahlmann, W. Schlump and G. Stein, Steel Research, vol.58, no.1, p.18, 1987.
    70. H. P. Leckie and H. H. Ulig, Journal of the Electrochemical Society, vol.113, p.1262, 1966.
    71. J. -H. Wang, C. C. Su and Z. Szklarska-Smialowska, Corrosion, vol.44, p.732, 1988.
    72. H. H. Ulig and J. Gilman, Zeitschrift fuer Physikalische Chemie, vol.226, p.127, 1964.
    73. 涂成一,"雙相不銹鋼之局部腐蝕性質研究", 碩士論文, 國立成功大學材料科學與工程研究所,1994.
    74. 涂成一, 李汝桐, 蔡文達, 防蝕工程, 第十二卷第二期, p.33, 1998.
    75. N. Haruki, T. Kimura, M. Kuroda, H. Miyuki and T. Kudo, in "Stainless Steels'91", vol.2, Chiba, Japan, 10-13 June, 1991, p.1175, 1991.
    76. H. Tsuge, Y. Tarutani and T. Kudo, Corrosion, vol.44, no.5, p.305, 1988.
    77. 周賢亮,"雙相不銹鋼於高濃度氯化鈉溶液中之鈍化行為及破裂特性研究", 博士論文, 國立成功大學材料科學與工程學系, 1999.
    78. 黃忠誠,"含氮合金層之雷射披覆處理及其電化學性質研究", 博士論文, 國立成功大學材料科學與工程學系, 1995.
    79. S. -L. Chou, M. -J. Tsai, W. -T. Tsai and J. -T. Lee, Materials Chemistry and Physics, vol.51, p.97, 1997.
    80. S. Lim and A. Atrens, Applied Physics A, vol.A51, p.411, 1990.
    81. S. D. Chyou and H. C. Shih, Corrosion, vol.47, p.31, 1991.
    82. W. -T. Tsai, B. Reynders, M. Stratmann and H. J. Grabke, Corrosion Science, vol.34, p.1647, 1993.
    83. R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim and Y. Lu, Corrosion Science, vol.31, p.179, 1990.
    84. N. Sridhar and J. Kolts, Corrosion, vol.43, no.11, p.646, 1987.
    85. J. W. Fourie and F. P. A. Robinson, in "Stainless Steel '91", Chiba, Japan, 10-13 June, 1991, ISIJ, vol.1, p.111, 1991.
    86. R. Sriram and D. Tromans, Corrosion, vol.45, no.10, p.804, 1989.
    87. A. Poznansky, C. S. Nalbone and J. D. Crawford, in" Duplex Stainless Steels", ed. by R. A. Lula, ASM, St. Louis, Missouri, 1982, p.431, 1982.
    88. S. D. Chyou and H. C. Shih, Materials Science and Engineering A, vol. 148, p.241, 1991.
    89. S. D. Chyou and H. C. Shih, Materials Science and Engineering A, vol. 129, p.109, 1990.
    90. F. Bodart, G. Terwagen and M. Piette, Materials Science and Engineering, vol.90, p.111, 1987.
    91. I. Barin, Thermochemical Data of Pure Substances, VCH, New York, 1995.
    92. W. Yang, R. C. Ni and H. Z. Hua, Corrosion Science, vol.24, no.8, p.691, 1984.
    93. I. Olefjord and L. Wegrelius, Corrosion Science, vol.38, no.7, p.1203, 1996.
    94. S. Bernhardsson, Sandvik Steel Report, No.S-51-32-ENG, Sandvik Steel, Koping, Sweden, p.1, 1984.
    95. Van Den Beukel, Acta Metallurgica, vol.28, p.965, 1980.
    96. L. H. de Almeida, I. Le May and P. R. O. Emygdio, Materials Characteristic, vol.41, p.137, 1998.
    97. K. Tsuzaki, T. Hori, T. Maki and I. Tamura, Materials Science and Engineering, vol.61, p.247, 1983.
    98. ASTM Standard, ASTM A262 practice A.
    99. R. W. Staehle, in "The Theory of Stress Corrosion Cracking in Alloys", ed. by J. C. Scully, Nato, Brussels, Belgium, p.221, 1971.
    100. Hyuk-Sang Kwon, Scripta Metallurgica et Materialia, vol.29, p.423, 1993.
    101. Y. Mukai, M. Watanabe and M. Murata, in "Fractography in Failure Analysis", eds. by B. M. Strauss and W. H. Cullen Jr., ASTM STP 645, ASTM, p.164, 1978.
    102. M. F. McGuire, A. R. Troiano and R. F. Hehemann, Corrosion, vol.29, p.268, 1973.
    103. J. Rawers and M. Grujicic, Materials Science and Engineering A, vol.A207, p.188, 1996.
    104. G. J. Theus and R. W. Staehle, in "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloy", ed. by R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, Unieux-Firminy, France, 12-18 June, 1973, NACE, 1977, p.845, 1977.
    105. M. Kowaka and H. Fujikawa, Transactions Japan Institute of Metals, vol.12, p.243, 1971.
    106. A. P. Bond and H. J. Dundas, in "Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Based Alloy", ed. by R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, Unieux-Firminy, France, 12-18 June, 1973, NACE, 1977, p.1136, 1977.
    107. K. N. Krishnan, International Journal of Fracture, vol.88, p.205, 1997.
    108. F. Iacoviello, M. Habashi and M. Cavallini, Materials Science and Engineering A, vol.224, p.116, 1997.
    109. R. F. A. Jargelius and Fan Cun-Gan, in "Stainless Steels'91", Chiba, Japan, 10-13 June, 1991, ISIJ, vol.1, p.692, 1991.
    110. A. Turnbull and R. B. Hutchings, Materials Science and Engineering A, vol.177, p.161, 1994.
    111. W. -T. Tsai, A. Moccari and D. D. Macdonald, in "EPRI Progress Report 1166-1", FCC 7808, 1 July to 31 December, 1981, p.2, 1981.
    112. Y. Murakami, in "Stress Intensity Factors Handbook", Committee on Fracture Mechanics, The Society of Materials Science, Japan, p.18, 1986.
    113. G.. W. Powell, E. R. Marshall and W. A. Backofen, Transactions of American Society for Metals, vol.50, p.478, 1958.
    114. P. Guiraldenq, Memoires Science Rev. Metallurgy, vol.64, p.907, 1967.
    115. F. C. Hull, Welding Journal, vol.51, p193s, 1972.

    下載圖示 校內:2005-02-23公開
    校外:2005-02-23公開
    QR CODE