| 研究生: |
張育齊 Chang, Yu-Chi |
|---|---|
| 論文名稱: |
利用三維破壞準則評估魚藤坪砂岩於二氧化碳地質封存破裂壓力之研究 Study on The Three Dimensional Failure Criterion of Yutenping Sandstone to Evaluate It’s Rupture Pressure for Carbon dioxide Geological Storage |
| 指導教授: |
李德河
Li, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 二氧化碳地質封存 、中空三軸 、三維破壞準則 、水力破裂 |
| 外文關鍵詞: | Carbon dioxide geological storage, Hollow cylinder triaxial test, Three dimensional failure criterion, Hydraulic fracture |
| 相關次數: | 點閱:117 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳地質封存技術已廣泛為許多國家所採用,以減少二氧化碳排放量。其原理是將二氧化碳以超臨界流體的形式注入地層中,如舊油氣層、地下煤層及深部地下鹽水層等構造中。而在注儲過程中,超臨界二氧化碳之壓力必須大於地層之既有液壓,此舉可能會使得岩層中產生新的破裂、或是使得既有之斷層產生滑動,而導致封存之二氧化碳溢出。
而本研究之研究場址苗栗縣鐵砧山儲氣窖,為台灣適合做為地質封存場址之一。由於台灣西部受歐亞板塊及菲律賓海板塊擠壓,現地應力狀態複雜,而傳統三軸試驗之試驗條件為σ_2=σ_3,會忽略中間主應力之影響,因此本研究採用改良式三軸室進行中空三軸試驗以求得做為地質封存儲存層的魚藤坪砂岩,在σ_1≠σ_2≠σ_3的應力狀態下其強度的變化,並進一步求得其破壞準則,以做為後續地質封存作業之參考。本研究亦利用改良式中空三軸室進行原狀魚藤坪砂岩之水力破裂試驗及經加速礦化封存機制之試體,以求得在地質封存中之破裂壓力,最後根據所建立之三維破壞準則來預估鐵砧山之魚藤坪砂岩在不同深度之水力破裂壓力。
In order to reduce the emission of carbon dioxide, technology of carbon dioxide geological storage has been adopted by many countries widely. The theory is that injecting carbon dioxide in the form of Supercritical fluid into the layer such as old oil reservoirs, underground coal seams, and deep saline formations. While in the process of injection, the pressure of supercritical carbon dioxide must be greater than the fluid pressure existing in the stratum, this might cause new rupture in the rock layer, or induce the slide of rock layer by existing fault, both of whom are likely leading to carbon dioxide’s leaking out.
The site in this study, Miao Li Tiechen Shan gas storage pit is one of the fit sites for carbon dioxide geological storage in Taiwan. Because the west of Taiwan are receive the extruding of Eurasian Plate and Philipenis Sea Plate, the in-situ stress conditions are complex, and the conditions of traditional triaxial test will ignore the intermediate principal stress, which means σ_2=σ_3. Thus, this study use improved triaxil cell to get the strength variation in the principle stress situation (σ_1≠σ_2≠σ_3) of Yutenping sandstone, which is the storage layer of geological storage by hollow cylinder triaxial test, and moreover the three dimensional failure criterion, which can be reference for further geological storage operations. This study also use improved triaxil cell to do hydraulic fracture test of original Yutenping sandstone and the specimen that had been during accelerate mineralization storage mechanism to get the rupture pressure of geological storage. At last, according to the establish three dimensional failure criterion to estimate the rupture pressure of Yutenping sandstone of Tiechen Shan in different depth.
1. 中央地質調查所全球資訊網,http://www.moeacgs.gov.tw/main.jsp
2. 呂明達、宣大衡、黃雲津、范振暉,「台灣陸上二氧化碳地質封存潛能推估」,礦冶,第五十二卷,第三期,頁154-161,2008。
3. 汪蘭君,「鐵砧山現地應力場與斷層在活動分析」,國立中央大學應用地質研究所碩士論文,2010。
4. 李德河、吳建宏、廖正傑、張育齊、王國榮,「利用中空三軸試驗建立魚藤坪砂岩之降伏曲面」,台灣岩盤工程研討會,2012。
5. 何春蓀,「台灣地質圖概論-台灣地質圖說明書」,經濟部中央地質調查所,1986。
6. 何信昌,「五萬分之一台灣地質圖說明書」,圖幅第十二號-苗栗,經濟部中央地質調查所,1994。
7. 邱至暐,「應用HTPF應力分析法於水力破裂應力量測法數據分析之研究」,國立高雄第一科技大學營建工程研究所碩士論文,2005。
8. 林朝棨,「台灣新志地質篇」,頁17-47,1954。
9. 林政億,「以破壞力學分析水力破裂法之研究」,國立成功大學資源工程研究所碩士論文,2006。
10. 林國安、吳榮章、余輝龍、宣大衡,「二氧化碳地下封存技術與展望」,礦冶,第五十二卷,第二期,頁17-33,2008。
11. 林墊順,「台灣二氧化碳地質封存潛能及安全性」,經濟前瞻,環保專欄頁2-5,2010。
12. 姜禮仙,「岩石材料在主應力軸旋轉下之力學行為研究」,國立成功大學土木工程研究所碩士論文,1993。
13. 范振暉、宣大衡,「從鐵砧山注儲之經驗談二氧化碳地質封存」,地質專題,頁48-50,2007。
14. 胡思璁,「我國宜發展碳捕捉封存技術以突破減碳困境」,國家政策研究基金會,101-001號,2013。
15. 桂椿雄,「超臨界流體萃取儀」,台灣超臨界流體協會電子報,第三期,2006。
16. 高嘉良,「應用HTPF應力分析法於水力破裂應力量測試驗數據可靠性之研究」,國立高雄第一科技大學營建工程研究所碩士論文,2007
17. 黃郁芳,「二氧化碳地質封存注儲壓力評估與加速礦化封存之研究:以鐵砧山背斜為例」,國立成功大學土木工程研究所碩士論文,2011。
18. 黃伊伶,「超臨界二氧化碳對魚藤坪砂岩礦化封存機制的影響」,國立成功大學土木工程研究所碩士論文,2012。
19. 陳建宏、丁原智,「FLAC3D應用於地下儲集層岩盤之應力分析」,第二屆資源工程研討會論文集,頁440-465,2005。
20. 陳中舜、邱耀平、陳偉忠、陳伯壯「先進燃煤電廠二氧化碳減量技術比較與我國因應策略」工程,80 (2),109-121,2007
21. 陳柏穎、李德河、吳建宏 、廖正傑,「中空三軸試驗探討古亭坑層泥岩破壞準則之變化」,台灣岩盤工程研討會,2012。
22. 萬曉明、游宗翰、陳建志、許妙行、林東緯、談駿嵩、楊鏡堂,「減碳科技之前瞻發展」,STPI,科技發展政策報導,第三期,頁27-48,2008。
23. 台灣中油事業探採部, http://www.cpc.com.tw/big5_BD/tped/home/index.asp
24. 蔡源福,「深層軟岩破壞特性研究」,國立成功大學土木工程研究所碩士論文,2009。
25. 謝文徨,「以不同應力路徑探討木山層砂岩在八面體上之力學行為研究」,國立成功大學土木工程研究所碩士論文,1995。
26. 鍾開增,「苗栗地區麓山帶之地質構造」,國立中央大學應用地質研究所碩士論文,1996。
27. 羅冠麟,「二氧化碳地質封存潛能岩層三維應力破壞準則:以牛山背斜為例」,國立成功大學土木工程研究所碩士論文,2011。
28. Anderson, E. M., The Dynamics of Faulting, Oliver and Boyd, Edinburgh, 1951.
29. Alsayed, M. I., “Utilising the Hoek triaxial cell for multiaxial testing of hollow rock cylinders”, International Journal of Rock Mechanics and Mining Sciences, Vol. 393 pp. 21-33,1984.
30. Brown, E. T., International Society of Rock Mechanics, Rock Characterization, Testing, and Monitoring:ISRM Suggested Methods, Pergamon Press, Oxford, UK, 1981.
31. Brost, R. DE., “Integration of plasticity equations for singular yield functions”, Computer &Structure, Vol. 26, NO. 5, pp. 823-829,1987.
32. Broms, B. B., and Kais Wong, “Geotextiles and geomem branes”, Vol. 8, Issue4, pp. 293-310, 1989.
33. Brenden, C. O’ Kelly and Naughton Patrick J., “Development of a new hollow cylinder apparatus for stress path measurements over a wide strain range”, Geotechnical Testing Journal, Vol. 28, No. 4, 2005.
34. Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag Hong Kong Limited, pp. 26-70, 1991.
35. CO2 Capture Project, http://www.co2captureproject.org/
36. CO2CRC, “Geological Storage of Carbon Dioxide Staying Safely Underground”, 2008.
37. Google earth, http://www.google.com/earth/index.html
38. Gunter, D., Bachu, S., and Benson, S. “The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide”. Geo. Soc,. London, Spec. Pub., 233, pp. 129-145, 2004.
39. Hubbert, M. K., and Willis, D. G, “Mehanics of hydraulic fracturing”: Jour. Petroleum Tech., V. IX, No.6, pp153-166,1997.
40. Hardin, B. O., and Drenvich, V. P., “Shear modulus and damping in soils: design equations and curves”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp667-692, 1972.
41. Hight, D. W., Gens, A., and Sumes, M. J. “The development of a new hollow cylinder apparatus for investigating the effect of principal stress rotation in soils”, Geotechnique, Vol. 33, No.4 pp.335-383, 1983.
42. Hoskins, E. R., “The failure of thick-walled hollow cylinders of isotropic rock”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 6, pp. 99-125, 1969.
43. IPCC, Carbon Dioxide Capture and Storage Technical Summary, 2005.
44. Kim, M. K. and Lade, P. V., “Modelling rock strength in three dimensions” , Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 21, No. 1, pp. 21-33, 1984.
45. Saada, A. S., and Townsend, F. C., State of The Art: Laboratory Strength Testing of Soils, Laboratory Shear of Soil, ASTM. STP740, Young R. N. and Townsend F. C., Eds, American Society for Testing and Materials, pp. 7-77, 1981.
46. Senseny, P. E. Mellegard, K. D. and Wagner, L. A., “Hollow cylinder test on natural rock salt”, Geotechnical Testing Journal, GTJODJ, Vol. 12, No. 2, pp. 157-162, 1989.
47. Shah, S., A Study of he Behavior of Jointed Rock Masses, PhD dissertation, University of Toronto, Canada, 1992.
48. Streit, J.E., and Hills, R. R., “Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock”, Energy, Vol.29, pp.1445-1456, 2004.
49. Wright, D. K., Gens, P. A. and Sadda, A. S., “Shear devices for determining dynamics soil properties”, Proceeding of the Earthquake Engineering and Soil Dynamics Conference, Geotechnical Engineering Division, ASCE, Pasadena, Vol.2, pp. 1065-1075, 1978.
50. Wijewickreme, D. and Vaid, Y. P., “Stress nonuniformities in hollow cylinder torsional specimens”, Geotechnical Testing Journal, Vol. 14, No.4, pp.349-362, 1991.
51. Wikipedia, http://zh.wikipedia.org/wiki/Wikipedia