| 研究生: |
吳黛岑 Wu, Tai-tsen |
|---|---|
| 論文名稱: |
集合住宅中庭植栽微氣候之數值模擬研究 A Study of the numerical simulation on urban microclimate- The influence of vegetation in the open space of condominiums |
| 指導教授: |
林憲德
Lin, Hsien-Te |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 植栽 、計算流體力學 、微氣候 、室外環境 |
| 外文關鍵詞: | outdoor, microclimate, vegetation, CFD |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植栽除了可對環境流場帶來遮蔽、濾滯等作用之外,在都市熱島效應的研究中也顯示植栽可緩熱環境負荷,提升人體舒適性。在近代計算流體力學(CFD)的發展裡,數值模擬輔助之研究方式已可應用在解析都市微氣候上,本研究運用算流體力學(CFD)之研究方式建立「植栽體與建築體」的數值模擬,探討都市室外環境植栽對於
微氣候影響,以高層集合住宅之室外中庭為實測案例,解析其熱環境因子監測資料,並經由數值模擬結果討論模擬物理模式參數設定,評估適宜之數值模型建立模式。
主要研究內容如下:
1. 藉由數值模擬軟體建立植栽體與建築體數值模型,其數值模擬結果呈現植栽對於高層集合住宅室外中庭流場帶來的影響,以整體流場而言,植栽樹冠下方將形成減速風場,數值模擬結果顯示風速近乎為0,但有植栽遮蔽之模型,因風速的導引效果,可促進「近地面層(人體活動範圍)」之風速改變,帶來舒適性。本研究數值模擬以植栽下方距地面2m 高測點為例,有無植栽遮蔽之平均風速比值為10.7。
2. 植栽對於環境所產生的減溫效果,在實測資料與數值模擬上皆得到驗證,而數值模型參數設定皆會影響呈現效果。本研究以二階標準 k-ε紊流模型模擬,測試模型分成植栽模型與紊流項目條件等兩個方向比較探討:其中植栽模型以在動量方程之阻力項加入植栽特性模擬結果描述呈現較好;紊流條件則是計算kε參數數值其結果較接近實測值。
3. 都市風場裡,高層建築中庭流場的變化另一控制成因來自於建築風口配置,高層建築外周封閉程度較高之中庭,可設計良好之建築物低層風口配置,利用其低層風口的通風效果促進自然對流程度。
本研究希望能藉由實驗場與數值模擬交互比對探討過程中,建立都市室外環境數值模擬初步之參考模式,CFD 在本研究初步測試階段對於定性預測有一定準確性,其有效率且方便直觀解析等優點將可提供設計者可視性效果預視,期望未來成能成為一輔助環境設計者之評估系統。
More than being the shelter and the filter, vegetation plays an important role in reducing air temperature too. Following the current development of Computational Fluid Dynamics (CFD), numerical studies are carried on analyzing the heat environment. Hence,this research establishes the numerical simulation on “vegetation and buildings in the outdoor environment”, and discusses the influence of vegetation on urban microclimate.
Measurements are performed to investigate the air temperature and building walls surface temperature from one real case in the open space of a condominium in urban area.Comparing measurements with the simulation data, this study estimates boundary conditions and the parameters of model. It is the first step of outdoor environment simulation on CFD, and I hope CFD simulation can be a predictable tool in further research.
The main research contents:
1. According to the numerical simulation of plants and building, the result presents the influence of vegetation in the outdoor flow field. The resistance of plants makes the velocity slow down, and the wind speed under the plants is almost zero. Nonetheless,plants lead the wind flow, and thus change the wind structure near ground (the height of humans).Heat comfort will be improved when velocity is up. For example, in a simulation case of this study, the points which are 2m high above the ground under
plants and no plants, the ratio of velocity is 10.7.
2. The effect of Vegetation in the urban area is found by both of measurements and numerical simulation, and the parameters of model affect the simulated result. Standard k-ε turbulence model is used in this study. The parameters of this model are discussed including vegetation part and turbulence conditions: In the vegetation part, it is modeled by using a sink term to the main momentum equation because of additional resistance. Moreover, in the turbulence condition, model calculated by inlet profiles for k and ε show result close to measurements.
3. In the urban area, wind gaps in buildings also influence the outdoor flow field. When the open space of a more enclosed condominium, the natural convection can be increased by wind gaps in low floor of buildings.
中文文獻:
C01. 王錦堂,建築應用物理學,台隆書店,1977
C02. 內政部,建築物耐風設計規範及解說,2007
C03. 朱佳仁,風工程概論,科技圖書,2006
C04. 郭伯巖,都市公園微氣候觀測解析-以台南市公園為例,成大碩論,2000
C05. 彭宣穎,集合住宅開放空間環境因子與鳥類群聚關係之研究-以高雄市河堤公園週邊集合住宅為例,成大碩論,2005
英文文獻:
E01. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ,Climate Change 2007: The Physical Science Basis
E02. FLUENT HELP,Fluent Inc.,2006
E03. Green, S.R.,PHOENICS Journal Computational Fluid Dynamics and its Applications vol.5 294-312,1992
E04. J. Liu, J. M. Chen, T. A. Black and M. D. Novak,E –εModeling of turbulent air flow downwind of a model forest edge,Boundary-Layer Meteorology 77 21-44,1996
E05. K. Takahashi, H. Yoshida, Y. Tanaka, N. Aotake, F. Wang,Measurement of thermal environment in Kyoto city and its prediction by CFD simulation,Energy and Buildings 36 771–779,2004
E06. Li Liang, Li Xiaofeng, Lin Borong, Zhu Yingxin,Improved k – e two-equation turbulence model for canopy flow,Atmospheric Environment 40 762-770,2006
E07. Mirela Robitu, Marjorie Musy, Christian Inard, Dominique Groleau,Modeling the influence of vegetation and water pond on urban microclimate,Solar Energy 80 435-447,2006
E08. S. Ergun,Fluid Flow through Packed Columns,Chem. Eng. Prog. 48(2) 89-94,1952
E09. Seginer, I., Mulhearn, P. J., Bradley, E. F. and Finnigan, J. J.,Turbulent Flow in a Mode1 Plant Canopy, Boundary-Layer Meteorol. 10 423-453,1976
E10. Selahaddin Orhan Akansu,Heat transfers and pressure drops for porous-ring turbulators in a circular pipe,Applied Energy 83 280-298,2006
E11. Wilson. J. D.,Numerical Studies of Flow through a Windbreak,J. Wind Eng. fnd. Aerodyn.21 119-154,1985
E12. Wilson. J. D.,A Second-Order Closure Model for Flow through Vegetation, Boundary-Layer Meteorol. 42, 371-392,1988
日文文獻:
J01. 吉野正敏,小氣候,大明堂株式會社,1976
J02. S. Murakami,Overview of Turbulence Models Applied in CWE-1997,2nd European & African Conference on Wind Engineering,1997