| 研究生: |
鄭國志 Cheng, Kuo-Chih |
|---|---|
| 論文名稱: |
藉由液態核磁共振的技術來探討不同溶劑在室溫熔鹽所造成分子動力行為 Molecular dynamics of BMI-PF6 in various solutions by 19F-NMR relaxation and 1H-NMR diffusion |
| 指導教授: |
王小萍
Wang, Shiao-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 室溫融鹽 、擴散係數 |
| 外文關鍵詞: | diffusion coefficient, ionic liquid |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) 是目前較熱門且較多人研究的離子液體,因其具有較特殊的物化性質。於此即利用NMR的實驗技巧來了解BMI-PF6與有機溶劑(如:Acetontrile (AN),Propylene Carbonate (PC),N,N-dimethylformamide, (DMF),Methyl Sulfoxide (DMSO) 之間的作用情形,方便廣泛的做運用。且發現到有機溶劑與陰離子的作用情況為:PC > DMSO > DMF > AN。且其離子強度可利用溶劑與BMI+的擴散係數比來定量出在此混合溶液的解離程度。
於含AN的混合溶液內,預測其具較小的介電常數導致在本實驗的溫度及濃度的條件下,其會以contact ion pairs形式存在,而DMF雖和AN具有相似的介電常數,但發現其會與離子液體有較強的作用,相對地,在PC中則具有較大的介電常數,以致於其多會以solvent-separated ion pairs形式存在。
1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) is one of the most popular and investigated classes of room temperature ionic liquid. The nature of interaction between BMI-PF6 and solvents has been investigated by analyzing NMR diffusion coefficient of (1) BMI containing species and (2) aprotic organic solvents (AOS), including Acetontrile (AN), Propylene Carbonate (PC), N,N-dimethylformamide (DMF), Methyl Sulfoxide (DMSO). It has been found the self-diffusing ions are associated to different extents, depending on AOS-anion interactions in the order: PC > DMSO > DMF > AN. The strengths of ionicity, quantified in terms of “degree of dissociation,” which are evaluated by proposed “the method of ratio of diffusion coefficient.” The association capabilities, dissociation of bridged ion-pairs, are in the reverse order of the above-mentioned AOS-PF6 interaction trend.
The AN solvent, as predicted by its small dielectric constant, results in complete paired ( vanishing dissociation ) IL in the range of experimental temperature and concentration. DMF has similar magnitudes of to that of AN, but can interact better with IL, revealed by a larger degree of dissociation of IL in DMF. PC has slightly larger value of dielectric constant than DMSO, but considerably stronger interaction with PF6 than DMSO. This can explain the much better dissociation of IL found experimentally in PC than in DMSO.
1. T. A. Zawodzinski Jr, R. Kurland, R. A. Osteryoung, J.Phys. Chem., 1987, 91, 962.
2. C. E. Keller, W. R. Carper, J. Phys. Chem., 1994, 98, 6865.
3. C. E. Keller, M. F. Lin, B. J. Piersma, W. R. Carper, J. Phey. Chem., 1995, 99, 12409.
4. W. R. Carper, G. J. Mains, B. J. Piersma, S. L. Mansfield, C. K. Larive, J. Phys. Chem., 1996, 100, 4724.
5. J. H. Antony, D. Mertens, A. Dölle, P. Wassercheid, W. R. Carper, ChemPhysChem, 2003, 4, 588.
6. W. R. Carper, P. G. Wahlbeck, A. Dölle, J. Phys. Chem. A, 2004, 108, 6069.
7. W. R. Carper, P. G. Wahlbeck, J. H. Antony, D. Mertens, A. Dölle, P. Wassercheid, Anal. Bioanal. Chem,. 2004, 378, 1548.
8. J. H. Antony, A. Dölle, D. Mertens, P. Wassercheid, W. R. Carper, P. G. Wahlbeck, J. Phys. Chem. A, 2005, 109, 6676.
9. P. Wassercheid, T. Welton, Editor “ Ionic Liquids in Synthesis”, 2002, Wiley- VCH Verlag GmbH & Co. KGaA.
10. P. Stilbs, Prog. NMR Spectrosc,. 1987, 19, 1-45.
11. I. N.Levine, Physical Chemistry, McGraw- Hill, New York, 1978, Chap. 16.
12. P. Walden, Bull. Acad. Imper. Sci, 1914, 1800.
13. F. H. Hurley, T. P. Wier, J. Electrochem. Soc., 1951, 98, 203-206.
14. F. H. Hurley, T. P. Wier, Jr., J. Electrochem. Soc., 1951, 98, 207-212.
15. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
16. Freemantle M. Chem. Eng. News March 30, 1998, 32.
17. E. I. Cooper, O’Sullivan, E. J. M., “Proceedings of the eighth International Symposium of Molten Salts”, The Electro- chemical Society: Pennington, NJ, 1992, Proceeding Vol. 92-12, pp 384-396.
18. J. S. Wilkes, M. J. Zaworodtko, J. Chem. Soc., Chem. Commun., 1992, 13, 965-967.
19. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron, 1996, 15, 1217.
20. J. S. Wilkes, Green Chem., 2002, 4, 73.
21. R. Hagiwara, Y. Ito, J. Fluorine Chem., 2000, 105, 221-227.
22. P. wasserscheid, W. Keim, Angew. Chem. Int. Ed., 2000, 39, 3772-3789.
23. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C.L. Hussey, Inorg. Chem., 1982, 21, 1263-1264.
24. W. T. Ford, R. J. Hart, J. Org. Chem., 1973, 38, 3916-3918.
25. K. R. Seddon, Kinet. Catal. Engl. Transl., 1996, 37, 693-697.
26. P. Bonhôte, A. –P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 1996, 35, 1168-1178.
27. A. Elaiwi, P. B. Hitchcock, K.R. Seddon, N. Srinivasan, Y. –M. Tan, T. Welton, J.A. Zora, J. Chem. Soc. Dalton Trans., 1995, 3467-3472.
28. H. Stegemann, A. Rhode, A. Reiche, A. Schnittke, H. Füllbier, Electrochim. Acta., 1992, 37, 379-383.
29. M. L. Mutch, J. S. Wilkes, Proc. Electrchem.Soc., 1998, 98, 254-260.
30. A. A. Fannin, Jr., D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J.Phys. Chem., 1984, 88, 2614-2612.
31. J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc., 1986, 133, 325-330.
32. K. R. Seddon, A. Stark, M.-J. Torres, Pure Appl. Chem., 2000, 72, 2275.
33. J. Dufourcq, J. F.Faucon, E. Breard, M. Pezolet, M. Tessier, P. E. Bougis, J. Van Rietschotenm, P. Delori, H. Rochat, Toxicon. 1982, 20, 165.
34. F. Block, W. W. Hansen, W. Packard, Phys. Rev. 1946, 69, 127.
35. E. M. Purcell, H. C. Torrey, R. V. Pound, Phys. Rev. 1946, 69, 37.
36. 楊淑岐,余靖譯 科儀新知 1999, 6, 32.
37. 甘魯生 電子月刊 1998, 36, 55.
38. J. T. Arnold, S. S. Dharmatti, M. E. Packard, J. Chem. Phy. 1951, 19, 507.
39. 黃紹光 諾貝爾的榮耀-化學桂冠,1999,天下遠見.
40. D. Yang, R. Konrat, L. E. Kay, J. Am. Chem. Soc. 1997, 119, 11938.
41. D. Yang, L. E. Kay, J. Am. Chem. Soc. 1999, 121, 2571.
42. K. J. klabunde and D. J. Burton; J. Am. Chem. Soc., 1972, 94, 5985.
43. H. J. V. Tyrrell, K.R. Harris, Diffusion in Liquids, Butterworths, London, 1984.
44. E. L. Cluster, Diffusion-Mass Transfer in Fluid Systems, Cambridge
Univeristy Press, Cambridge, 1984.
45. W. S. Price, Concepts Magn. Reson., 1997, 9, 299.
46. W. S. Price, Concepts Magn. Reson., 1998, 10, 197.
47. U. Matenaar, J. Richter, and M. D. Zeidler, J. Magn. Reson. A, 1996, 122, 72.
48. K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Solid State Ionics, 1998, 107, 1.
49. K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B, 1999,
103, 519.
50. K. Hayamizu, Y. Aihara, S. Arai, W. S. Price, Electrochim. Acta, 2000, 45, 1313.
51. Y. Aihara, S. Arai, K. Hayamizu, Electrochim. Acta, 2000, 45, 1321.
52. F. C. Gozzo, L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont, M. N. Eberlin, Chem. Eur. J., 2004, 10, 6187-6193.
53. J. R. Sanders, in ” An Investigations of Transport properties and Ion Association in Room Temperature Haloaluminate Molten Salt ”, Ph.D. Dissertation, The University of Mississippi, 1987
54. A. D. Headley and N. M. Jackson, J. Phys. Org. Chem,. 2002, 15, 52-55.
55. A. D. Headley, S.R.S. S. Kotti, J. Nam and K. Li, J. Phys. Org. Chem., 2005, 18, 1018-1022.
56. L. Shae-Tao, D. Mei-Fang, C. Cha-Wen, and L. Sue-Sing, Tetrahedron, 2004,
60, 9441-9446.
57. A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T. Welton, Proc. 8th International Symposium on Molten Salts, vol. 92-16. The electrochemical Society: Pennington, NJ, 1992, 98.
58. Bill-Ming Su, Shuguang Zhang, Z. Conrad Zhang, J. Phys. Chem. B, 2004, 108, 19510-19517.
59. J. Dupont, J. Braz. Chem. Soc., 2004, 15, 3, 341-350.
60. J. Dupont, P. A. Z Suarez, R. F. D. Souza, R. A. Burrow, J. P. Kintzinger, Chem. Eur. J., 2000, 6, 13, 2377-2381.
61. C. G. Hanke, A. Johansson, J. B. Harper, R. M. Lyden-Bell, Chemical Physics Letter, 2003, 374, 85-90.
62. D. L. Pavia, G. M. Lampman, G. S Kriz, Introduction to Spectroscopy 3rd.
63. J. F. Huang, P. Y. Chen, I. W. Sun, S. P. Wang, Inorg. Chim. Acta., 2001, 320, 7.
64. J. Fuller, R. T. Carlin, H. C. De Long, D. Haworth, J. Chem. Soc. Chem. Commum., 1994, 299.
65. T. umecky, M. Kanakuto, Y. Ikushima, Fluid Phase Equilibria, 2005, 228-229, 329-333.
66. A. Noda, K. Hayamizu and M. Watanabe, J. Phys. Chem. B, 2001; 105: 4603-4610.
67. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. Susan, and M. Watanabe, J. Phys. Chem. B, 2004, 108, 16593-16600.
68. H. Tokuda, K. Hayamizu, K. Ishii, M. A. B. Susan, and M. Watanabe, J. Phys. Chem. B, 2005, 109, 6103-6110.
69. D. Nama, P. G. A. Kumar, P. S. Pregosin, T. J. Geldbach, P. J. Dyson, Inorganica Chemica Acta, 2006, 359, 1907-1911.
70. H. Tokuda, K. Ishii, M. A. B. Susan, S. Tsuzuki, K. Hayamizu and M. Watanabe, J. Phys. Chem. B, 2006, 110, 2833-2839.
71. T. Umecky et al., Fluid Phase Equilibria, 2005, 228-229, 329-333.
72. John D. Holbrey, W. Matthew Reichert, Mark Nieuwenhuyzen, Oonagh Sheppard, Chirstopher Haradacre and Robin D. Roger, Chem. Commun.,2003, 476-477.
73. M. Deetlefs, C. Haradacre, M. Nieuwenhuyzen, O. Sheppard and A. K. Soper, J. Phys. Chem., 2005, 109, 1593-1598.
74. J. D. Tubbs, M. M. Hoffmann, Journal of solution chemistry, 2004, 33, 4,
381-394
75. S. V. Dzyuba and R. A. Bartsch, ChemPhysChem, 2002, 3, 161-166.
76. J. Wang, A. Zhu, Y. Zhao, and K. Zhuo, Green Chemistry, 2003, 5, 618-622.
77. J. Wang, A. Zhu, Y. Zhao, and K. Zhuo, J. Solu. Chem., 2005, 34, 585-595.
78. A. Arce, E. Rodil, A. Soto, J. solu. Chem., 2006, 35, 1, 63-77.
79. N. S. Isaacs, Physical Organic Chemistry, 1st edn. ( Longman Scientific & Technical, New York, 1987 ).