簡易檢索 / 詳目顯示

研究生: 張志聖
Chang, Chin-Sheng
論文名稱: 功率分佈網路之瞬間切換雜訊抑制
Simultaneous Switching Noise Elimination for Power Distribution Network
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 125
中文關鍵詞: 訊號完整性電磁能隙瞬間切換雜訊功率分佈網路鐵磁性材料電磁干擾
外文關鍵詞: magnetic material, power distribution network (PDN), simultaneous switching noise (SSN), electromagnetic bandgap, signal integrity (SI), electromagnetic interference (EMI).
相關次數: 點閱:182下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線通訊網路的快速發展,直接帶動了民生4C的產品發展與創造。而通訊產品的需求除了基本的輕、薄、短、小與低成本外,多功能與多頻段的操作則為目前市場的主流。通訊產品由多個獨立的模組所組成,每個模組皆有其運作的機制,互不干擾。四層板的構裝技術廣為運用在高速數位產品,主被動元件放置在最上層與最下層;中間的兩層金屬面分別為電源與接地層,層與層之間的訊號則藉由金屬連通柱(via)來連結。因電流快速切換而在電源與接地層之間的空腔中產生瞬間切換雜訊,使電路的功率完整性受到影響,造成模組的誤動作,甚至損壞。
    本論文的研究方向主要是利用埋藏式之電磁能隙結構以及磁性材料來抑制瞬間切換雜訊。首先,有別於傳統的週期性結構,本文在激發源與接收源傳播路徑上,放置高阻抗表面。此非週期性排列之結構提供瞬間切換雜訊抑制從1.1到1.85 GHz。與傳統週期性高阻抗表面做比較,從量測結果中可發現,兩者具有相同的抑制特性。另一方面,隔離環廣泛的使用在PCB構裝中來預防電磁波的耦合。本文結合隔離環與高阻抗表面結構之概念,提出埋藏式的隔離環。藉由兩個不同尺寸的埋藏式隔離環得到具有寬止帶的抑制特性,其所抑制的頻率範圍從1.2到7.2 GHz,有效頻寬約6 GHz。最後,擺脫利用電磁能隙之手法來改善訊號完整性,改以材料的角度,來觀察具有磁性之材料對於雜訊抑制的能力。一般而言,材料的損耗在微波元件設計上是一個影響訊號品質的因素,材料的損耗越大,表示對訊號能量的衰減越大。然而,在本文中,藉由磁性材料本身的損耗,來衰減空腔中電磁波的能量。在氧化鋁基板上沉積軟磁材料鎳,觀察沉積不同厚度的鎳對於雜訊抑制的能力。從實驗結果得知,鎳的厚度越厚,所能抑制雜訊的能力越大,這是因為材料本身的損耗會隨著沉積的厚度增加而增加。當鎳金屬的厚度來到3 um時,所提供的-20 dB頻寬約16 GHz (2 GHz到18 GHz),在時域的部分也有將近90 %的抑制能力。由於磁性材料是放置於電源曾與接地層之間,不會造成外部訊號被磁性材料吸收,以確保產品的訊號完整性。由此可見,磁性材料對於瞬間切換雜訊的抑制課題上提供新的一種抑制手段。

    With rapid growth of wireless local area network (WLAN), the trends of high video/sound/data transmission and internet everywhere are increased day by day. Thus, the requirements of compact size, light weight and high performance are necessary; in addition, the trends of the multi-function and multi-band operations in a module are also important in communication products design. Four metal layers assemble technology is widely used in high-speed digital circuits. The top and bottom metal layers are used to mount the active and passive components, the others are used to be power and ground planes. With fast edge rates, high clock frequencies, and low voltage levels, simultaneous switching noise (SSN), on the power/ground planes has become one of major concerns in printed circuit boards (PCBs). The cavity modes among the power and ground planes excited by the SSN causes serious signal integrity (SI) or power integrity (PI) problems for the high-speed circuits. While the clock frequencies increasing, the suppression of the switching noise is becoming important.
    In this dissertation, the investigation is suppression of SSN by using embedded EBG structure and magnetic material. First, the aperiodic high-impedance surface (A-HIS) configuration is proposed, revealing suppression of the SSN from 1.1~1.85 GHz. The measured results show very well compared with the conventional low-period HIS structures. In addition, the proposed designs provide excellent SSN suppression and good SI as the conventional structure. Second, we use two embedded isolation moats with different patch size to obtain the wide stopband elimination performance. The suppression frequency range of the proposed structures is from 1.2 to 7.2 GHz and the improvement in time domain is 36%. Finally, the nickel film, deposited onto a dielectric substrate, was applied to restrain switching noise. This structure can efficiently suppress the SSN with broadband (totally 16 GHz) and the peak noise in time domain can be significantly lessened over 90%. The SSN suppression behaviors are dominated by the thickness of magnetic film. Therefore, magnetic materials provide an interesting method for SSN suppression.

    Abstract (CHINESE) ----------------------------------------------------------------------------i Abstract (ENGLISH) -------------------------------------------------------------------------- iii Contents------------------------------------------------------------------------------------------vii List of Figures-----------------------------------------------------------------------------------xi List of Tables-----------------------------------------------------------------------------------xvi Chapter 1 Introduction -----------------------------------------------------------------------1 1.1 Power Distribution Network -----------------------------------------------------------1 1.2 Signal Integrity ---------------------------------------------------------------------------2 1.2.1Timing---------------------------------------------------------------------------------4 1.2.2 Power and Ground Noise-----------------------------------------------------------5 1.2.3 Electromagnetic Interference------------------------------------------------------5 1.3 Motivation---------------------------------------------------------------------------------6 1.4 Overview of the Dissertation------------------------------------------------------------7 Reference --------------------------------------------------------------------------------------9 Chapter 2 Overview of Simultaneous Switching Noise in Printed Circuit Board --------------------------------------------------------------------------------------11 2.1 Generation of Simultaneous Switching Noise---------------------------------------11 2.2 The effect of simultaneous switching noise for power integrity---------------15 2.3 Cavity model-----------------------------------------------------------------------------15 2.4 Field Distribution in the Cavity-------------------------------------------------------20 2.5 Conventional Noise Suppression Techniques-------------------------------------22 2.5.1 Decoupling Capacitor------------------------------------------------------------22 2.5.2 Split Power and Ground Planes------------------------------------------------24 2.5.2.1 Single-Cavity----------------------------------------------------------------24 2.5.2.2 Multi-Cavity-----------------------------------------------------------------26 2.5.2.2.1 Short Via and Excited Source Placed at the Same Cavity---28 2.5.2.2.2 Short Via and Excited Source Placed at the Different Layer------30 2.5.3 Electromagnetic Band Gap Structures------------------------------------------32 2.5.4 High-Impedance Surface Structures---------------------------------------------35 Reference -------------------------------------------------------------------------------------37 Chapter 3 Electromagnetic Bandgap --- Theory, Design and Application------------ ---------------------------------------------------------------------------------------41 3.1 Periodic Structure Applied to Antenna Design--------------------------------------41 3.1.1 Introduction to Periodic Structure-----------------------------------------------41 3.1.2 Spurious Suppression of Antenna Using Periodic Structures----------------43 3.2 Periodic Structure Applied to SSN Suppression------------------------------------48 3.2.1Suppression of Simultaneous Switching Noise Using Periodic Structures---------------------------------------------------------------------------48 3.2.2 Embedded Electromagnetic Bandgap Structure-------------------------52 Reference -------------------------------------------------------------------------------------57 Chapter 4 Suppression Simultaneous Switching Noise Using Embedded Electromagnetic Bandgap Structure Filters-----------------------------60 4.1 Introduction------------------------------------------------------------------------------60 4.2Low Parasitic Effect Using Aperiodic High-Impedance Surface Structure----------------------------------------------------------------------------------61 4.2.1 Introduction-------------------------------------------------------------------------61 4.2.2 Structure Design-------------------------------------------------------------------62 4.2.3 Power Integrity and Signal Integrity Performance----------------------------64 4.2.4 Summary----------------------------------------------------------------------------71 4.3Controllable Frequency of Simultaneous Switching Noise Suppression Using Embedded Dielectric Resonators in High-Impedance Surfaces Structure-----------------------------------------------------------------------------------71 4.3.1 Introduction-------------------------------------------------------------------------71 4.3.2 Structure Design-------------------------------------------------------------------73 4.3.3 Capacitance-Enhanced High-Impedance Surface-----------------------------75 4.3.3.1 Effect of DR Permittivity----------------------------------------------------75 4.3.3.2 Effect of DR Radius----------------------------------------------------------76 4.3.4 Experimental Results and Discussion-------------------------------------------77 4.3.5 Summary----------------------------------------------------------------------------80 Reference -------------------------------------------------------------------------------------81 Chapter 5 Ring-Type High-Impedance Surface Structure----------------------------84 5.1 Introduction------------------------------------------------------------------------------84 5.2 Mitigation of Simultaneous Switching Noise by Using Embedded Isolation Moat for DC Power Bus---------------------------------------------------------------85 5.2.1 Introduction-------------------------------------------------------------------------85 5.2.2 Structure Design-------------------------------------------------------------------87 5.2.3 Experiments and Results----------------------------------------------------------88 5.2.3.1 Frequency Domain Analysis------------------------------------------------88 5.2.3.2 Time Domain Analysis-------------------------------------------------------91 5.2.4 Summary----------------------------------------------------------------------------91 5.3 An Embedded Isolation Moat Structures with Wide Stopband and Low Parasitic Effect for Elimination Simultaneous Switching Noise-----------------------------92 5.3.1 Introduction-------------------------------------------------------------------------92 5.3.2 Structure Design-------------------------------------------------------------------94 5.3.3 Result and Discussion-------------------------------------------------------------95 5.3.3.1 Frequency Domain Performance-------------------------------------------95 5.3.3.2 Time Domain Performance--------------------------------------------------97 5.3.4 Summary----------------------------------------------------------------------------99 Reference------------------------------------------------------------------------------------100 Chapter 6 High-Frequency Noise Suppression Using Magnetic Material-----------------------------------------------------------------------103 6.1 Introduction-----------------------------------------------------------------------------103 6.2 Theoretical Background--------------------------------------------------------------104 6.2.1 Soft Magnetic Materials---------------------------------------------------------105 6.2.2 Eddy-Current----------------------------------------------------------------------106 6.2.3 Hysteresis Loop-------------------------------------------------------------------107 6.2.4 Losses------------------------------------------------------------------------------108 6.2.5 High-Frequency Noise Suppression-------------------------------------------109 6.3Magnetic Properties Required for High-Frequency Noise Suppression----------------------------------------------------------------------------110 6.4 Conducted Noise Suppression Effect of Magnetic-Plated Film-----------------111 6.5 Radiated Noise Suppression Effect of Direct Plating onto a Printed Circuit Board------------------------------------------------------------------------------------113 6.5.1 Structure Design------------------------------------------------------------------113 6.5.2 Frequency Domain Analysis----------------------------------------------------114 6.5.3 Time Domain Analysis-----------------------------------------------------------115 6.6 Summary--------------------------------------------------------------------------------117 Reference -----------------------------------------------------------------------------------117 Chapter 7 Conclusions and Future Works ---------------------------------------------120 7.1 Conclusions-----------------------------------------------------------------------------120 7.2 Future Works---------------------------------------------------------------------------122 Publication List------------------------------------------------------------------------------123

    Chapter 1.
    [1]. T. Thakur and T. Jaswanti, “Study and characterization of power distribution network reconfiguration.” IEEE Transmission & Distribution Conference and Exposition: Latin America, pp.1-6, 15-18 Aug. 2006.
    [2]. R. Evans and M. Tsuk, “Modeling and measurement of a high-performance computer power distribution system,” IEEE Trans. Comp. Packag. Manufact. Technol. B, vol. 17, pp. 467–471, Nov. 1994.
    [3]. M.S. Zhang, Y.S. Li, L.P. Li, J. Chen, J. Pan, J.M. Lu, G. Song, D.C. Jiang, “An efficient power-delivery method for the design of the power distribution networks for high-speed digital systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 693-707, 2009.
    [4]. X.C. Wei, E.P. Li, E.X. Liu, R. Vahldieck, “Efficient simulation of power distribution network by using integral-equation and modal-decoupling technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2277-2285, 2008.
    [5]. T.H. Kim, “Electromagnetic band gap synthesis and its application in analog-to-digital converter load boards,” In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering, Georgia Institute of Technology, 2008.
    [6]. Rao R. Tummala, Eugene J. Rymaszewski, Alan G. Klopfenstein, Microelectronics Packaging Handbook, Technology Drivers, Part I, Chapter 3, Second Edition, Chapman & Hall, 1997.
    [7]. S.C. Thierauf, “High-speed circuit board signal integrity,”Artech House, 2004.
    [8]. Y. Brian, “Digital signal integrity: modeling and simulation with interconnects and packages,” Upper Saddle River, NJ: Prentice Hall, c2001.
    [9]. E. Bogatin, “Signal integrity: simplified,” Upper Saddle River, NJ: Prentice Hall, c2004.
    [10]. D. Brooks,“Signal integrity issues and printed circuit board design,” Upper Saddle River, NJ :Prentice Hall,c2003.
    [11]. R.Y. Chen, “Signal integrity,” Sigrity, Inc.
    [12]. W. Becker, B. McCredie, G. Wilkins, and A. Iqbal, “Power Distribuiton modeling of high performance first level computer packages,” IEEE 2nd Topical Meeting on Electrical Performance of Electronic Packaging, Conference Proceedings, pp. 203-205, Oct. 20-22, 1993, Monterey, CA., USA.
    [13]. A.R. Djordjević and T.K. Sarkar, “An investigation of Delta-I Noise on IntegratedCircuits,” IEEE Trans. Electromagnetic Compatibility, vol. 35, pp. 134-147, May 1993.
    [14]. S. V. D. Berghe, F. Olyslager, D. D. Zutter, J. D. Moerloose, and W. Temmerman, “Study of the Ground Bounce Caused by Power Plane Resonances,” IEEE Trans. Electromagnetic Compatibility, vol. 40, pp. 111-119, May 1998.
    [15]. T. Sudo, H. Sasaki, N. Masuda, J.L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, no. 2, pp. 304-314, 2004.

    Chapter 2.
    Reference:
    [1]. P. Liu, Z.F. Li, G.B. Han, “Application of asymptotic waveform evaluation to eigenmode expansion method for analysis of simultaneous switching noise in printed circuit boards (PCBs),” IEEE Trans. Electromagn. Compat., vol. 48, no. 3, pp.485-492, 2006.
    [2]. K. Ito, K. Kato, N. Hirano, T. Sudo, “Experimental characterization of simultaneous switching noise for multichip modules, “IEEE Trans. Adv. Packag., vol. 18, no. 4, pp. 609-613, 1995.
    [3]. E. Yungseon, W.R. Eisenstadt, J.Y. Jeong, O.K. Kwon, “New simultaneous switching noise analysis and modeling for high-speed and high-density CMOS IC package design,” IEEE Trans. Adv. Packag., vol. 23, no. 2, pp. 303-312, 2000.
    [4]. J. Zhang, M.K. Iyer, Y.L. Qiu, B.L. Ooi, M.S. Leong, “S-parameter based technique for simultaneous switching noise analysis in electronic packages,” IEEE Trans. Adv. Packag., vol. 22, no. 3, pp. 267-273, 1999.
    [5]. N. Na, J. Choi, S. Chun, M. Swaminathan and J. Srinivasan, "Modeling and Transient Simulation of Planes in Electronic Packages," IEEE Trans. Adv. Packag., vol. 23, no. 3, pp. 340-352, 2000.
    [6]. William D. Brown, Advanced Electronic Packaging, Chapter 3, IEEE Press, 1998.
    [7]. W. Becker, B. McCredie, G. Wilkins and A. Iqbal, "Power Distribution Modeling of High Performance First Level Computer Packages," IEEE 2nd Topical Meeting on Electrical Performance of Electronic Packaging, pp. 202-205, 1993.
    [8]. James P. Libous and Daniel P. O'Connor, "Measurements, Modeling, and Simulation of Flip-Chip CMOS ASIC Simultaneous Switching Noise on a Multilayer Ceramic BGA," IEEE Trans. Adv. Packag., vol. 20, no 3, pp. 266-271, 1997.
    [9]. I. Novak, “Reducing simultaneous switching noise and EMI on ground/power planes by dissipative edge termination,” IEEE Trans. Adv. Packag., vol. 22, no 3, pp. 274-283, 1999.
    [10]. S.V. Berghe, F. Olyslager, D.D. Zutter, J.D. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, no. 2, pp. 111–119, 1998.
    [11]. J.R. James, P.S. Hall, and C. Wood, “Microstrip Antenna Theory and Design”, Peter Peregrinus, Ltd., Stevenage, U.K., 1981.
    [12]. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, “Microstrip Antenna Design Handbook”, Boston: Arteck House, 2001.
    [13]. S.L. Chuang, “The Equivalance of the Electric and Magnetic Surface Current Approaches in Microstrip Antenna Studies”, IEEE Trans. on Antennas and Propagation, vol. 28, pp.569-571, 1980.
    [14]. P Perlmutter, S. Shritkman, and D. Treves, “Electric Surface Current Model for the Analysis of Microstrip Antennas with Application to Rectagular Elements”, IEEE Trans. on Antennas and Propagation, vol. 33, pp.301-311, 1985.
    [15]. C.A. Balanis, “Advanced Engineering Electromagnetics”, John Wiley & Sons, New York, 1989.
    [16]. R. Downing, P. Gebler, G. Katopis, “Decoupling capacitor effects on switching noise,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, vol. 16, no 5, pp. 484-489, 1993.
    [17]. M. Popovich, E.G. Friedman, “Decoupling capacitors for multi-voltage power distribution systems,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, no 2, pp. 217-228, 2006.
    [18]. W. Cui, J. Fan, H. Shi, and J.L. Drewniak, "DC power bus noise isolation with power islands," IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp. 899-903, 13-17 Aug. 2001.
    [19]. J. Lee, M.D. Rotaru, M.K. Iyer, H. Kim and J. Kim, " Analysis and suppression of SSN noise coupling between power-ground plane cavities through cutouts in multilayer packages and PCBs," IEEE Trans. Adv. Packag., vol. 28, no. 2, pp.298-309, 2005.
    [20]. V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic band gap structure for microstrip lines,” IEEE Microwave and Guide Wave Letters, vol. 8, no. 2, pp. 69-71, 1998.
    [21]. F. Yang, K. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic bandgap (UCPBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, 1999.
    [22]. Z. N. Chen, N. Yang, Y. Y. Wang, and M. Y. W.Chia, “A novel electromagnetic bandgap structure and its application for antenna duplexer,” IEEE Radio and Wireless Conference, pp. 71-74, 2002.
    [23]. D. M. Pozar, Microwave Engineering, 2nd. New York: Wiley, 1998.
    [24]. J. Choi, V. Govind, R. Mandrekar, S. Janagama, and M. Swaminathan, “Noise reduction and design methodology in mixed-signal systems with alternating impedance electromagnetic bandgap (AI-EBG) structure,” accepted for presentation at IEEE MTT-S International Microwave Symposium (IMS), Long Beach, CA, June 2005.
    [25]. T.L.Wu, C.C.Wang, Y.H. Lin, T.K.Wang, and G. Chang, “A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 3, pp. 174–176, Mar. 2005.
    [26]. T. Kamgaing, O.M. Ramahi, “Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes,” IEEE Trans. Electromagn. Compat., vol. 47,no. 9, pp. 479-489, 2005.
    [27]. T. Kamgaing and O. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw.Wireless Compon. Lett., vol.13, no.1, pp. 21-23, 2003.
    [28]. R. Abhari and G. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol.51, no.6, pp. 1629-1639, 2003.
    [29]. T. Kamgaing and O. M. Ramahi, “High-impedance electromagnetic surfaces for parallel-plate mode suppression in high-speed digital systems,” Proceeding of IEEE 11th Topical Meeting on Electrical and Performance of Electronic Packaging (EPEP), pp. 279-282, Monterey, CA, October 2002.

    Chapter 3.
    [1]. V. Radisic, Y. Qian, and T. Itoh, “ Broadband power amplifier using dielectric photonic bandgap structure ”, IEEE Microwave Guide Wave Lett. Vol.8, No.1, pp.13-14, 1998.
    [2]. V. Radisic, Y. Qian, R, Coccioli, and T. Itoh, “ Novel 2-D photonic bandgap structure for microstrip lines ”, IEEE Microwave Guide Wave Lett. Vol.8, No.2, pp.69-71, 1998.
    [3]. J-S. Lim, H-S Kim, J.S. Park, D. Ahn, and S. Nam “ A power amplifier with efficiency improved using defected ground structure ”, IEEE Microw. Wireless Compon. Lett., Vol.11, No.4, pp.170-172, 2001.
    [4]. C. S. Kim, J. S. Park, D. Ahn, and J-B. Lim “ A novel 1-dimensional periodic defected ground structure for planar circuits ”, IEEE Microwave Guide Wave Lett. Vol.10, No.4, pp.131-133, 2000.
    [5]. J. I. Park, C. S. Kim, J. S. Park, Y. Qian, D. Ahn, and T. Itoh, “ Modeling of photonic bandgap and its application for the low-pass filter design ”, in 99 APMC Dig., pp.331-334,1999.
    [6]. D. Pozar, “ Microwave Engineering Second Edition “, John Wiley and Sons, INC., 1998.
    [7]. T.K. Gaylord and M.G. Moharam,“ Analysis and Applications of Optional Diffraction by Gratings ”, IEEE Proc, vol.73, pp.884-937,oct.1985
    [8]. D. Maystre,“ Electromagnetic Study of Photonic Band Gaps ”, Pure Appl. Opt., vol. 3, No.6, pp.975-993, Nov. 1994.
    [9]. IE3D Version 6.1 Zeland Software Inc., Fremont, CA, 1998.
    [10]. AnSoft HFSS Version 8.0, copyright 1984-2003 Ansoft Corporation.
    [11]. R. Coccioli, F.R. Yang, K.P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate”, IEEE Trans. Microwave Theory Tech., Vol. 47,pp. 2123-2130,1999.
    [12]. Y.Horii and M. Tsutsumi, “Harmonic control by photonic bandgap on microstrip patch antenna”, IEEE Microwave Guided Wave Lett., Vol.9, pp.13-15, 1999.
    [13]. S.K. Sharma and L. Shafai“Enhanced Performance of An Aperture-Coupled Rectangular Microstrip Antenna on A Simplified Unipolar Compact Photonic Band Gap (UC-PBG) Structure”, Antennas and Propagation Society, IEEE International Sym, Vol 2, pp. 498 –501, 2001.
    [14]. M.S. Zhang, Y.S. Li, C. Jia, L.P. Li;, “Simultaneous Switching Noise Suppression in Printed Circuit Boards Using a Compact 3-D Cascaded Electromagnetic-Bandgap Structure,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2200-2207, 2007.
    [15]. J.H. Kwon, D.U. Shim, S.I. Kwak, J.G. Yook, “Partial placement of electromagnetic bandgap unit cells to effectively mitigate simultaneous switching noise,” Electron. Lett., vol. 44, no.22, pp.1302-1303, 2008.
    [16]. G. Leena, R. Mariappan, P. Salil, B. Subbarao, ” Analysis and estimation of Simultaneous Switching Noise coupling in high speed Printed Circuit Boards using EBG structure,” Electromagnetic Interference & Compatibility, 2008. INCEMIC 2008. 10th International Conference on, pp. 585-590, 26-27 Nov. 2008.
    [17]. K.C. Hung, D.B. Lin, C.T. Wu, L. Wu, “Mitigation of simultaneous switching noise in high speed circuit using electromagnetic bandgap structures with interdigial meander bridge,” Information, Communications & Signal Processing, 2007 6th International Conference on, pp. 1-5, 10-13 Dec. 2007.
    [18]. T.K. Wang, C.C Wang, S.T. Chen, Y.H. Lin, T.L. Wu, “A new frequency selective surface power plane with broad band rejection for simultaneous switching noise on high-speed printed circuit boards,” Electromagnetic Compatibility, 2005. EMC 2005. 2005 International Symposium on, vol. 3, pp.917-920, 2005.
    [19]. S. Shahparnia, O.M. Ramahi, “Simultaneous switching noise mitigation in PCB using cascaded high-impedance surfaces,” Electron. Lett., vol. 40, no.2, pp.98-100, 2004.
    [20]. C.L. Wang, G.H. Shiue, W.D. Guo, R.B. Wu, “A Systematic Design to Suppress Wideband Ground Bounce Noise in High-Speed Circuits by Electromagnetic-Bandgap-Enhanced Split Powers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4209-4217, 2006.
    [21]. J. Lee, H. Kim, J. Kim, “High dielectric constant thin film EBG power/ground network for broad-band suppression of SSN and radiated emissions,” IEEE Microw. Wirel. Compon. Lett., vol. 15, no.8, pp. 505-507, 2005.
    [22]. C.R. Simovski, P. de Maagt, I.V. Melchakova,”;High-impedance surfaces having stable resonance with respect to polarization and incidence angle,” IEEE Trans. Antennas Propagat., vol. 53, no.3, pp.908-914, 2005.

    Chapter 4.
    [1]. K. Ren, C.Y. Wu, L.C. Zhang,” The restriction on delta-I noise along the power/ground layer in the highspeed digital printed circuit board,” in Proc. IEEE Int. Electromagn. Compat. Symp., Denver, CO, 511-516, Aug. 1998.
    [2]. T. Kamgaing, O.M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 1, 21-23, January 2003.
    [3]. T.L. Wu, S.T. Chen, J.N. Hwang, Y.H. Lin,” Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat., Vol. 46, No. 1, 33-45, February 2004.
    [4]. Archambeault, Bruce, "Analyzing power/ground plane decoupling performance using the partial element equivalent circuit (PEEC) simulation technique," IEEE International Symposium on Electromagnetic Compatibility Symposium Record Volume Two, Washington, D.C., 779-784, August 21-25, 2000.
    [5]. B. Archambeault, A.E. Ruehli, “Analysis of power/ground-plane EMI decoupling performance using the partial-element equivalent circuit technique,” IEEE Trans. Electromagn. Compat., Vol. 43, No. 4, 437-445, November 2001.
    [6]. Y.Q. Fu, Q.R. Zheng, Q. Gao, and G. Zhang,” Mutual Coupling Reduction Between Large Antenna Arrays Using Electromagnetic Bandgap (EBG) Structures,” Progress In Electromagnetics Research, PIER, Vol. 20, No. 6, 819-825, 2006.
    [7]. H.J. Hsu, M.J. Hill, J. Papapolymerou, and R. W. Ziolkowski,” A Planar X-Band Electromagnetic Band-Gap (EBG) 3-Pole Filter,” IEEE Microw. Wireless Compon. Lett., Vol.12, No. 7, 255-257, July 2002.
    [8]. J. García-García, F. Martín, F. Falcone, J. Bonache, J.D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R. Marqués,” Microwave Filters With Improved Stopband Based on Sub-Wavelength Resonators,” IEEE Trans. Microw. Theory Tech.,Vol. 53, No. 6, 1997-2006, June 2005.
    [9]. L. Li, C.-H. Liang, and C. H. Chan,” Waveguide End-Slot Phased Array Antenna Integrated With Electromagnetic Bandgap Structures,” Progress In Electromagnetics Research, PIER, Vol. 21, No. 2, 161-174, 2007.
    [10]. T.L. Wu, Y.H. Lin, S.T. Chen, “A novel power plane with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microw. Wireless Compon. Lett., Vol.14, No. 7, 337-339, July 2004.
    [11]. J. Qin, O.M. Ramahi, “Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures,” IEEE Microw. Wireless Compon. Lett., Vol.16, No. 9, 487-489, September 2006.
    [12]. D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopolous, E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech.,Vol. 47, No. 11, 2059-2074, November 1999.
    [13]. G.W. Peterson, J. L. Prince, and K. L. Virga, “Investigation of power/ground plane resonance reduction using lumped RC elements,” in Proc. 2000 Elec. Comp. & Tech. Conference, vol. 42, No. 3, pp. 769-774.
    [14]. T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, no.9, pp.2935-2942, Sept. 2005.
    [15]. S.D. Rogers, “Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2495-2505, Aug. 2005.
    [16]. T. Kamgaing, and O. M. Ramahi, “Inductance-enhanced high-impedance surfaces for broadband simultaneous switching noise mitigation in power planes,” in proceedings, IEEE International Microwave Symposium, Philadelphia, PA, pp. 2165-2168, June 8-13, 2003.
    [17]. S. Shahparnia and O. M. Ramahi, “A simple and effective model for electromagnetic bandgap structures embedded in printed circuit boards,” IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10, pp. 621-623, Oct. 2005.
    [18]. S. Shahparnia and O. M. Ramahi, “Simultaneous switching noise mitigation in PCB using cascaded high-impedance surfaces,” Electron. Lett., vol. 40, no. 2, pp.98-100, Jan. 2004.
    [19]. M.S. Zhang, Y.S. Li, C. Jia, L.P. Li, and J. Pan, “A double-surface electromagnetic bandgap structure with one surface embedded in power plane for ultra-wideband SSN suppression,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.10, pp. 706-708, Oct. 2007.
    [20]. J. Park, A.C.W. Lu, K.M. Chua, L.L. Wai, J. Lee, and J. Kim, “Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP applications,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp.481-483, Sept. 2006.
    [21]. T. L. Wu and S. T. Chen, “A photonic crystal power/ground layer for eliminating simultaneously switching noise in high-speed circuit,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3398-3406, Aug. 2006.
    [22]. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998.

    Chapter 5.
    [1] S.D. Rogers, “Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp.2495-2505, Aug. 2005.
    [2] B. Archambeault, A.E. Ruehli, “Analysis of power ground plane EMI decoupling performance using the partial element equivalent circuit technique,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp.437-445, Nov. 2001.
    [3] B. Archambeault, “Analyzing power ground/plane decoupling performance using the partial element equivalent circuit simulation technique,” Proceedings of IEEE International Symposium on Electromagnetic Compatibility, 21-25 Aug. 2000, pp. 779-784.
    [4] J.N. Hwang, T.L. Wu, “The bridging effect of the isolation moat on the EMI caused by ground bounce noise between power ground planes of PCB, “Proceedings of IEEE International Symposium on Electromagnetic Compatibility, 13-17 Aug. 2001, pp. 471-474.
    [5] T.L. Wu, C.C. Wang, Y.H. Lin, T.K. Wang, G. Chang, “A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits,” IEEE Microw. Wireless Compon. Lett., vol.15, no. 3, pp.174-176, Mar. 2005.
    [6] X.H. Wang, B.Z. Wang, Y.H. Bi, W. Shao “A novel uniplanar compact photonic bandgap power plane with ultra-broadband suppression of ground bounce noise,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 5, pp.267-268, May 2006.
    [7] J. Qin and O. M. Ramahi, “Ultra-Wideband Mitigation of Simultaneous Switching Noise Using Novel Planar Electromagnetic Bandgap Structures,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 9, pp.487-489, Sep. 2006.
    [8] S. Shahparnia, B. Mohajer-Iravani, O.M. Ramahi, “Electromagnetic noise mitigation in high-speed printed circuit boards and packaging using electromagnetic band gap structures,” in Proc. Elec. Comp. Tech., vol. 2, June 1-4, 2004, pp. 1831-1836.
    [9] L.D. Smith, “SSN and power plane bounce for CMOS technology,” in Proc. IEEE 8th Elect. Perform. Electron. Packag. Top. Meeting, pp. 136–166, 1999.
    [10] S. V. Berghe, F. Olyslager, D. D. Zutter, J. D. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., vol. 40, no. 2, pp. 111–119, 1998.
    [11] S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using EBG structures,” IEEE Trans. Electromagn. Compat., vol. 46, no. 4, pp. 580–586, 2004.
    [12] J. Kim, J. Pak, J. Park and H. Kim, “Noise generation, coupling, isolation, and EM radiation in high-speed package and PCB,” IEEE International Symposium on Circuits and Systems, Vol. 6, 23-26 May 2005 Page(s):5766 - 5769.
    [13] S.M. Moghadasi, A.R. Attari, and M.M. Mirsalehi,” Compact and Wideband 1-D Mushroom-Like EBG Filters,” Progress In Electromagnetics Research, PIER, Vol. 83, 323-333, 2008.
    [14] L. Li, C. H. Liang, and C.H. Chan,” Waveguide End-Slot Phased Array Antenna Integrated With Electromagnetic Bandgap Structures,” Progress In Electromagnetics Research, PIER, Vol. 21, 161-174, 2007.
    [15] T.L. Wu, Y. Y. Lin, C.C. Wang, and S. T. Chen, “EBG power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2935–2942, Sep. 2005.
    [16] J. Park, A. C. W. Lu, K. M. Chua, L. L. Wai, J. Lee, and J. Kim, “Double-stacked EBG structure for wideband suppression of simultaneous switching noise in LTCC-based SiP application,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 481–483, Sep. 2006.
    [17] T. Kamgaing, O.M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 1, 21-23, January 2003.
    [18] C.S. Chang, D.B. Lin, K.C. Hung, I.T. Tang and M.P. Houng,” Simultaneous Switching Noise Mitigation Capability With Low Parasitic Effect Using Aperiodic High-Impedance Surface Structure,” Progress In Electromagnetics Research Letters, PIERL, Vol. 4, 149-158, 2008.
    [19] T.L. Wu, Y.H. Lin, and S.T. Chen, “A Novel Power Plane with Super-Wideband Elimination of Ground Bounce Noise on High Speed Circuits,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 3, pp. 174–176, Mar. 2005.
    [20] J. Park, A.C.W. Lu, K.M. Chua, L.L. Wai, J. Lee and J. Kim, “Double-Stacked EBG Structure for Wideband Suppression of Simultaneous Switching Noise in LTCC-Based SiP Applications,” IEEE Microw. Wireless Compon. Lett., vol.16, no. 9, pp.481-483, Sep. 2006.

    Chapter 6.
    [1]. J. Park, A.C.W. Lu, K.M. Chua, L.L. Wai, J. Lee; J. Kim, “Double-Stacked EBG Structure for Wideband Suppression of Simultaneous Switching Noise in LTCC-Based SiP Applications,” IEEE Microw. Wirel. Compon. Lett., vol. 16, no.9, pp. 481-483, 2006.
    [2]. S. Chun, M. Swaminathan, L.D. Smith, J. Srinivasan, J. Zhang, M.K. Iyer, “Modeling of simultaneous switching noise in high speed systems,” IEEE Adv. Packa., vol. 24, no.2, pp.132-142, 2001.
    [3]. C. Ryu, J. Park, J.S. Pak, K. Lee, T. Oh, J. Kim, “Suppression of Power/Ground Inductive Impedance and Simultaneous Switching Noise Using Silicon Through-Via in a 3-D Stacked Chip Package,” IEEE Microw. Wirel. Compon. Lett., vol. 17, no.12, pp. 855-857, 2007.
    [4]. E.P. Wohlfarth, “Magnetic materials,” North-holland publishing company amsterdam, New York, Oxford, vol. 1, 1990.
    [5]. B. D. Cullity, “Introduction to magnetic materials,”Addison-wesley publishing company, 1972.
    [6]. E. W. Lee, and A. C. Lynch, “Soft magnetic materials,” Advances in Physics, 8, 292-348, 1959.
    [7]. “Magnetically soft materials,” Metals Handbook , vol. 1, pp. 785-797, 1961.
    [8]. Kamgaing, T., and Ramahi, O.M.: “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microw. Wirel. Compon. Lett., vol. 13, no.1, pp. 21-23, 2003.
    [9]. Wu, T.L., Chen, S.T., Hwang, J.N., and Lin, Y.H.: ” Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat., 2004, 46, (1), pp. 33-45.
    [10]. Qin, J., and Ramahi, O.M.: “Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures,” IEEE Microw. Wire. Compon. Lett., 2006, 16, (9), pp. 487-489.
    [11]. Sievenpiper, D., Zhang, L., Broas, R.F.J., Alexopolous, N.G., and Yablonovitch, E.: “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., 1999, 47, (11), pp. 2059-2074.
    [12]. S. X. Wang, N. X. Sun, M. Yamaguchi, “Properties of a new soft magnetic material,” Nature, vol. 407, pp.150, 2000.
    [13]. H. Zeng, M. Zheng, R. Skomski, and D. J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, “Magnetic properties of self-assembled Co nanowires of varying length and diameter,” J. Appl. Phys. vol. 87, no. 9, pp.4718-4720, 2000.
    [14]. N. Cordente, M. Respaud, F. Senocq, M.J. Casanove, C. Amiens, and B. Chaudret, “Synthesis and Magnetic Properties of Nickel Nanorods,” Nano Lett., vol. 1, no. 1, pp.565-568, 2001.
    [15]. T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, “Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route,” Solid State Sciences, vol. 8, pp.425-430, 2006.
    [16]. Y. Belghazi, D. Stoeffler, S. Colis, G. Schmerber, Ulhaq-Bouillet, J. L. Rehspringer, A. Berrada, H. Aubriet, J. Petersen, C. Becker, D. Ruch, and A. Dinia1, “Magnetic properties of Al-doped Zn0.95Co0.05O films: Experiment and theory,” J. Appl. Phys. vol. 105, pp.113904, 2009.
    [17]. J.J.B. Yi, J. Ding, S. Thongmee, Y.P. Feng, G.M. Chow, “The structure and magnetic properties of NiO with different sizes,” Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International, pp.1047-1050, 24-27 March 2008.
    [18]. S. Yoshida K. Kondo H. Ono, “High-frequency noise suppression using magnetic-plated Film,” NEC Technical Journal, vol.1, no.5, 2006.

    下載圖示 校內:2011-10-01公開
    校外:2014-10-01公開
    QR CODE