簡易檢索 / 詳目顯示

研究生: 戴欣樺
Tai, Hsin-Hua
論文名稱: 次波長聚焦現象之光源特性研究
Study on the Light Source Properties in Sub-wavelength Focusing Phenomenon
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 79
中文關鍵詞: 次波長聚焦異常穿透有限時域差分法
外文關鍵詞: Sub-wavelength Focusing Phenomenon, Enhanced Transmission, Finite-Difference-Time-Domain (FDTD) method
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  光通過次波長狹縫後所產生之現象在近幾年引起許多的注意,其中光線通過次波長孔洞所產生之異常穿透現象更已被研究數年之久。根據法國Ebbesen研究團隊所發表之研究中提出,在次波長結構下,光線穿透一於出射面上有週期性結構環繞之孔洞後,可產生強度增強二至三階之「指向性」現象,且穿透結構後之光線,發散角可降至二至三度。此次波長結構之聚焦現象可被廣泛的應用在許多光學元件上,以及資料儲存、近場光學顯微鏡等領域。
      在許多所發表過之研究中,激發金屬表面電漿以達到次波長聚焦現象之光源皆為平面光源。在此篇論文中,入射光源之特性將被研究及探討。經由改變光源之物理特性,穿透光強增強後進而使聚焦現象之強度隨之提升,且光源位置亦將影響所需輸入之光源特性及聚焦現象。透過模擬可找出提升聚焦現象光強所需之光源特性間關係。在本文中所使用之模擬軟體為「OptiFDTD 6.0」,為一以有限時域差分法為理論基礎作進行計算模擬之套裝軟體。

     Light transmission through a sub-wavelength slit has drawn much interest recently, and the phenomenon of extraordinary optical transmission through a sub-wavelength aperture has been studied over the years. According to the researches published by Ebbesen et al.[1998,2002], the “directional beaming” phenomenon has shown that the transmittance of light penetrating sub-wavelength slits surrounded by periodic corrugation on the exit side can be enhanced to 2~3 orders, and the divergence of the diffraction can be lowered to 2~3 degrees. The sub-wavelength slit structures can be used in many optical devices such as light emission, data storage, and near-field microscopy.
     Most of the published researches use plane wave as their incident light source to excite the surface plasmon in the metallic structure to achieve enhanced transmission through the aperture. In this thesis, the light source of this sub-wavelength focusing phenomenon will be studied. By changing the light beam properties, the focusing phenomenon will have enhancement in their intensity, and the light source position will also affect the focusing intensity. The beam properties which can achieve better focusing phenomenon will be found out. All numerical simulations and analysis of these structures will be performed by the package of “OptiFDTD 6.0” which is based on the theory of the finite-difference time-domain (FDTD) method.

    Abstract i 中文摘要 iii Acknowledgement v Table of Contents vi List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Review 1 1.3 The Destinations and Motivations of the Research 2 1.4 Overview of Chapters 3 Chapter 2 Theory of Transmission through Small Hole 4 2.1 Diffraction Limit 4 2.2 Extraordinary Optical Transmission Phenomenon 5 2.2.1 Extraordinary Optical Transmission through Sub-wavelength Hole 5 2.2.2 Directional Emission from Sub-wavelength Aperture 6 2.3 Surface Plasmon 7 2.3.1 Fundamental Properties of Surface Plasmons 7 2.3.2 Light Excitation of Surface Plasmon Oscillation Phenomenon 8 2.3.3 ATR coupler 9 2.3.4 Grating Coupler 9 2.4 Physical Mechanism of Enhanced Transmission through Sub-wavelength Slit 10 Chapter 3 Numerical Simulation Method 23 3.1 Introduction 23 3.1.1 Simulation Method 23 3.1.2 Theoretical Background 23 3.2 Finite-Difference Time-Domain Method 23 3.2.2 Maxwell’s Equations [Taflove, 2000] 23 3.2.3 Reduction to Two Dimensions 25 3.2.4 The Yee Algorithm 26 3.2.5 Finite-Difference Expressions for Maxwell’s Equations 27 3.2.6 Reduction to the Two-dimensional TMz and TEz modes 31 3.3 Boundary Conditions 33 3.3.1 Perfect Matched Layer Absorbing Boundary Conditions 33 3.3.2 Periodic Boundary Conditions 34 3.4 Dielectric Functions of Metallic Material 35 3.4.2 Drude Model 35 3.4.3 Lorentz-Drude Model in Frequency Domain 36 3.4.3 Lorentz-Drude Model in Time Domain 37 Chapter 4 Simulation Results 41 4.1 Simulation System 41 4.1.1 Simulation Structures 41 4.1.2 Light Sources Properties 41 4.1.3 Sub-wavelength Focusing Phenomenon of Six Structures 42 4.2 Effect of Light Source Property with Variations to the Focusing Phenomenon 42 4.3 Relationship between Slit Width and Half Width of Input Field Transverse 44 4.4 Variations in Light Source Position 44 4.5 Discussion 45 Chapter 5 Conclusion 78 5.1 Conclusion 78 5.1.1 Transmission Enhancement 78 5.1.2 Light Source Position Affections 78 5.2 Suggestion 79 5.2.1 Light source manipulation 79 5.3 Applications 79 Reference 80 Autobiography 84

    Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface plasmon subwavelength optics”, Nature, Vol. 424, pp.824-830, August, 2003.

    Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114, 185-200, 1994

    Bethe, H. A., “Theory of diffraction by small holes”, Phys. Rev., Vol. 66, pp.163-182, 1944.

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T., and Wolff, P. A., “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, Vol. 391, pp.
    667-669, 1998.

    Fox, M., Optical Properties of Solids, OXFORD University Press, 2001.

    Garcia-Vidal, F. J., Martin-Moreno, L., Lezec H. J., and Ebbesen, T. W., “Focusing light with a single subwavelength aperture flanked by surface corrugations”, Appl. Phys. Lett. Vol. 83, Number 22, pp.4500-4502, 2003.

    Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W., and Lezec, H. Z., "Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes", Phys. Rev. B, Vol. 58, pp. 6779-82, 1998.

    Grupp, D. E., Lezec, H. J., Pellerin, K.M., Ebbesen, T. W., and Thio, T., "Fundamental Role of Metal Surface in Enhanced Transmission through Subwavelength Apertures", Appl. Phys. Lett., Vol. 77, pp. 1569-71, 2000.

    Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, 1988.

    Hecht, E., OPTICS, Addison Wesley, 2002.

    Kim, T. J., Thio, T., Ebbesen, T. W., Grupp, D. E., and Lezec, H. J., "Control of Optical Transmission Through Metals Perforated with Subwavelength Hole Arrays", Optics Letters, Vol. 24, pp. 256-58, 1999.

    Lezec, H. J., Dediron, A., Devaux, E., Linke, R. A., Martin-Moreno, L., Garcia-Vidal, F. J., and Ebbesen, T. W., “Beaming light firm a subwavelength aperture”, Science, Vol. 297, pp. 820-822, August, 2002.

    Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Pellerin, K. M., Thio, T. J., Pendry, B., and Ebbesen, T. W., "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays", Phys. Rev. Lett., Vol. 86, pp.1114, 2001.

    Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A., and Ebbesen, T. W., “Theory of highly directional emission from a subwavelength aperture surround by surface corrugations”, Phys.l Rev. Lett., Vol. 90, pp. 167401, April, 2003.

    Markovic, M. I., and Rakic, A. D., “Determination of reflection coefficients of laser light of wavelength from the surface of aluminum using the Lorentz-Drude model”, Applied Optics, 29, pp. 3479-3483, 1990.

    Markovic, M. I., and Rakic, A. D. “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model”, Opt. Laser Technol. 22, pp.394-398, 1990.

    OptiFDTD - Technical Background and Tutorials, Optiwave, 2005

    Raether, H., Surface Plasmons. Springer-Verlag Berlin Heidelberg, 1988

    Rakic, A. D., and Djurisic, A. B., “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices”, Applied Optics, August, Vol. 37, No. 22, pp. 5271-5283, 1998

    Sempere, L. P., “Surface plasmon polaritons (SPP) and their use in subwavelength optics”, Term paper for Physics of Nanostructures.

    Taflove, A., and Hagness, S. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, ARTECH HOUSE, INC. 2000.

    Thio, T., Ghaemi, H. F., Lezec, H. J., Wolff, P. A., and Ebbesen, T. W., "Surface-Plasmon Enhanced Transmission through Hole Arrays in Cr Films", JOSA B, Vol. 16, pp. 1743-8, 1999.

    Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J., and Ebbesen, T. W., “Enhanced light transmission through a single subwavelength aperture”, Optics Letter, Vol. 26, pp.1972-1974, December, 2001.

    Wood, R. W., “On a remarkable case of uneven distribution of light in a diffraction grating spectrum', Philos. Mag., Vol. 4, pp.396-408, 1902.

    Wood, R. W., “Anomalous Diffraction Gratings”, Phys. Rev., Vol. 48, pp. 928-936, December, 1935.

    Wyckoff, R. W. G., Crystal structures, Interscience, New York, 1963

    Yariv, A., and Yeh, P., Optical Waves in Crystals, Wiley, New York, 1984.

    Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302-307, 1966.

    Yu, L. B., Lin, D. Z., Chen, Y. C., Chang, Y. C., Huang, K. T., Liaw, J. W., Yeh, J. T., Liu, J. M., Yeh, C. S., and Lee, C. K., “Physical origin of directional beaming emitted from a subwavelength slit”, Physical Review B, Vol. 71, pp.041405, 2005.

    下載圖示 校內:2009-07-26公開
    校外:2009-07-26公開
    QR CODE