簡易檢索 / 詳目顯示

研究生: 沈上淵
Shen, Shang-Yuan
論文名稱: 摻碳鎢閘極電極之製備與特性研究
Fabrication and Characterization of carbon-added tungsten gate electrodes
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 功函數閘極
外文關鍵詞: work function, gate electrode
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用鎢靶和碳靶,以共濺鍍法製備W1-xCx和Wtop/C/Wbottom,二種「摻碳鎢薄膜」。搭配SiO2/p-Si成為金屬-氧化物-半導體(簡稱MOS)電容器,並進行900 °C真空退火一小時,探討各種條件閘極電極之材料性質及電性表現。
    本實驗利用電子微探儀對W1-xCx薄膜進行定量分析;使用低掠角X光繞射儀對W1-xCx薄膜進行薄膜晶體結構分析;以X光光電子能量分析儀對W1-xCx薄膜進行化學鍵結分析;利用穿透式電子顯微鏡及歐傑電子能譜分析儀對MOS疊層結構進行微結構及成份深度分佈分析;並對MOS電容器進行電容-電壓曲線及電流密度-電場曲線的量測。
    材料分析結果顯示,W1-xCx薄膜在初鍍時為非晶型態,在經過900 °C真空退火後,轉變為α-W和W2C共存。而成分方面,則藉由改變靶材的濺鍍功率,成功將W1-xCx薄膜中的碳含量控制在0~20%之間。不論是穿透式電子顯微鏡或是歐傑電子能譜分析的結果,皆顯示出MOS電容器的疊層結構在真空退火前後,均相當穩定,並無明顯的變動。
    電性量測分析結果顯示,初鍍的W1-xCx薄膜做為閘極電極時,其等效功函數(Φm,eff)會隨著碳含量的比例增加而上升,推測是由於碳的電負度較高,可提升鎢對其電子的束縛力,使其不易脫離至真空能階,故功函數因而提高。而初鍍的Wtop/C/Wbottom薄膜做為閘極電極時,當Wbottom的厚度越小時,其等效功函數會降低,推測是由於較高電負度的碳,聚集於金屬閘極/介電層界面,使得界面的電子均勻分布不均,形成「碳誘發偶極」,不僅改變了能帶圖的排列,也同時改變了等效功函數。而真空退火後的MOS電容器則出現了電容-電壓曲線扭曲的現象,因而無法針對退火處理後的「摻碳鎢薄膜」進行等效功函數的擷取。
    本研究首次發現在「摻碳鎢薄膜」中,改變功函數的機制有二種,且同時存在,主要是看何者佔優勢。經由精確的控制W1-xCx的成分和Wbottom的厚度,絕對可以同時滿足NMOS和PMOS的需求。

    Carbon-added tungsten thin films of two configurations, W1-xCx and Wtop/C/Wbottom, were fabricated by co-sputtering tungsten and carbon targets. The metal-oxide-semiconductor (MOS) capacitors of carbon-added tungsten/SiO2/p-Si layered structure were fabricated, in order to investigate their material and electrical characteristics.
    The composition of W1-xCx thin films is examined by electron probe X-ray microanalyzer (EPMA). The crystal structure of W1-xCx thin films is identified by grazing incident angle x-ray diffractometer (GIAXRD). X-ray photoelectron spectroscopy (XPS) is applied for chemical bonding analysis of W1-xCx thin films. Transmission electron microscopy (TEM) and Auger electron spectroscopy (AES) are employed to analyze the microstructure and compositional depth profiles of the MOS capacitors, respectively. The C-V curves and J-E curves are measured to find the electrical characteristics of MOS capacitors.
    Based on the EPMA results, the carbon content of W1-xCx thin films can be modulated from 0 to 20%, by controlling the sputtering power on the targets. According to the X-ray diffraction patterns, as-deposited W1-xCx thin films are amorphous. After vacuum annealing at 900 °C, the diffraction patterns show the coexistence of α-W and W2C phases in W1-xCx thin films. TEM and AES results indicate that there is no significantly structural change between as-deposited and annealed MOS capacitors.
    The effective work function of the as-deposited W1-xCx thin films increases with increasing carbon content. Incorporation of carbon atoms enhances the electron binding energy for tungsten atoms because tungsten lose part of electrons to carbon due to its higher electronegativity than that of tungsten. In as-deposited Wtop/C/Wbottom system, the effective work function decreases by reducing the thickness of the Wbottom layer. The carbon-induced dipoles are responsible for this case. The MOS capacitors after annealing showed distorted C-V curves; therefore, it is impossible to extract effective work function in this situation.
    In this work, we demonstrated that there are two mechanisms to explain the modulation of the effective work function of carbon-added tungsten thin film. Actually, these mechanisms should coexist in the carbon-added tungsten thin film, and the way of adding carbon determines which mechanism is dominated. By precisely controlling the carbon content in W1-xCx and the thickness of Wbottom, the effective work function will meet the requirement of PMOS and NMOS.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第1章 緒論 1 1-1 背景 1 1-2 研究目的 7 第2章 理論基礎 8 2-1 金屬閘極研究之文獻回顧 8 2-2 鎢及碳化鎢之基本性質 14 2-3 等效功函數之求法 17 第3章 實驗方法與步驟 20 3-1 實驗材料 20 3-1.1 濺鍍靶材(Sputter target) 20 3-1.2 基材(Substrates) 20 3-1.3 濺鍍使用氣氛 20 3-1.4 實驗相關藥品與耗材 21 3-2 實驗設備 22 3-2.1 薄膜濺鍍系統(Sputtering system) 22 3-2.2 退火爐系統(Annealing system) 23 3-3 實驗流程 24 3-3.1 基材清洗 25 3-3.2 MOS電容器製備 27 3-4 分析儀器 28 3-4.1 四點探針儀(four-point-probe) 28 3-4.2 X光光電子能譜儀(XPS) 29 3-4.3 低掠角X光繞射儀(GIAXRD) 30 3-4.4 穿透式電子顯微鏡(TEM) 31 3-4.5 歐傑能譜分析儀(AES) 32 3-4.6 電子微探儀(EPMA) 33 3-4.7 電感電容電阻計量儀與半導體參數分析儀 33 第4章 實驗結果與討論 34 4-1 W1-xCx薄膜材料特性研究 34 4-1.1 W1-xCx薄膜成份分析 34 4-1.2 W1-xCx薄膜晶體結構分析 36 4-1.3 W1-xCx薄膜電阻率分析 40 4-1.4 W1-xCx薄膜化學鍵結鑑定 42 4-2 MOS電容器疊層結構分析 47 4-2.1 歐傑電子縱深能譜分析 47 4-2.2 穿透式電子顯微鏡分析 50 4-3 MOS電容器電性量測分析 57 4-3.1 等效功函數之量測 59 4-3.2 漏電流之量測 68 第5章 結論 70 第6章 參考文獻 72

    1. R. M. C. de Almeida and I. J. R. Baumvol, Reaction-diffusion in high-k dielectrics on Si, Surf. Sci. Rep. 49, 1(2003)
    2. Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, and P. K. Ko, Suppression of boron penetration in p+ polysilicon gate p-MOSFET’s using low-temperature gate-oxide N2O anneal, IEEE Electron Device Lett. 15, 109 (1994)
    3. S. Zafar, C. Cabral, Jr. R. Amos, and A. Callegari, A method for measuring barrier heights, metal work functions and fixed oxide charge densities in metal/SiO2/Si capacitors, Appl. Phys. Lett. 80, 4858 (2002)
    4. D. Gu, S. K. Dey, and P. Majhi, Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2, Appl. Phys. Lett. 89, 082907 (2006)
    5. A. E. -J. Lim, W. S. Hwang, X. P. Wang, D. M. Y. Lai, G. S. Samudra, D. -L. Kwong, and Y. -C. Yeo, Metal-gate work function modulation using hafnium alloys obtained by the interdiffusion of thin metallic layers, J. Electrochem. Soc. 154, H309 (2007)
    6. B. Chen, R. Jha, and V. Misra, Work function tuning via interface dipole by ultrathin reaction layers using AlTa and AlTaN alloys, IEEE Electron Device Lett. 27, 731 (2006)
    7. P. -C. Jiang, Y. -S. Lai, and J. S. Chen, Influence of nitrogen content in WNx on its thermal stability and electrical property as a gate electrode, J. Electrochem. Soc. 153, G572 (2006)
    8. Y. -S. Suh, G. P. Heuss, J. -H. Lee, and V. Misra, Effect of the composition on the electrical properties of TaSixNy metal gate electrodes, IEEE Electron Device Lett. 24, 439 (2003)
    9. J. Liu and D. L. Kwong, Improving work function tuning by preimplanting multiple dopants in Ni fully silicided gate, Appl. Phys. Lett. 88, 082105 (2006)
    10. C. M. Lin and J. S. Chen, The influence of Si content on the work function of W1-xSix (x≦14 atom%) gate electrodes, Electrochem. Solid-State Lett. 11, H99 (2008)
    11. W. Gao, J. F. Conley, Jr., and Y. Ono, NbO as gate electrode for n-channel metal-oxide-semiconductor field-effect-transistors, Appl. Phys. Lett. 84, 4666 (2004)
    12. H. Zhong, G. Heuss, V. Misra, H. Luan, C. -H. Lee, and D. -L. Kwong, Characterization of RuO2 electrodes on Zr silicate and ZrO2 dielectrics, Appl. Phys. Lett. 78, 1134 (2001)
    13. W. S. Hwang, S. H. Chan and B. J. Cho, Metal Carbides for Band-Edge Work Function Metal Gate CMOS Devices, IEEE Trans. on Electron Devices, VOL. 55, NO. 9, SEPTEMBER 2008
    14. W. S. Hwang, C. Shen, X. P. Wang, D. S. H. Chan, and B. J. Cho, A novel Hafnium Carbide (HfCx) metal gate electrode for NMOS device application, IEEE Symposium on VLSI Tech. Dig., 156 (2007)
    15. D. H. Triyoso, R. Gregory, J. K. Schaeffer, D. Werho, D. Li, S. Marcus, and G. D. Wilk, Atomic layer deposited TaCy metal gates: Impact on microstructure, electrical properties, and work function on HfO2 high-k dielectrics, J. Appl. Phys. 102, 104509 (2007)
    16. W. Wang, T. Nabatame, and Y. Shimogaki, Dielectric Evolution Characteristics of HfCN Metal-Electrode-Gated MOS Stacks, J. Electrochem. Soc. 154 (2), G25-G29 (2007)
    17. C. Adelmann, J. Meersschaut, L.-Å. Ragnarsson, T. Conard, A. Franquet, N. Sengoku, Y. Okuno, P. Favia, H. Bender, C. Zhao, B. J. O’Sullivan, A. Rothschild, T. Schram, J. A. Kittl, S. Van Elshocht, S. De Gendt, P. Lehnen, O. Boissière, and C. Lohe, Thermally stable high effective work function TaCN thin films for metal gate electrode applications, J. Appl. Phys. 105, 053516 (2009)
    18. D. A. Neamen, Semiconductor Physics and Devices: Basic principles, 3rded. (McGraw-Hill, New York, 2003)
    19. Y. -C. Yeo, P. Ranade, T. -J. King, and C. Hu, Effects of high-k gate dielectric materials on metal and silicon gate workfunctions, IEEE Electron Device Lett. 23, 342 (2002)
    20. H. Yang, Y. Son, S. Baek, H. Hwang, H. Lim, and H. -S. Jung, Ti gate compatible with atomic-layer-deposited HfO2 for n-type metal-oxide-semiconductor devices, Appl. Phys. Lett. 86, 092107 (2005)
    21. Q. Li, Y. F. Dong, S. J. Wang, J. W. Chai, A. C. H. Huan, Y. P. Feng, and C. K. Ong, Evolution of Schottky barrier heights at Ni/HfO2 interfaces, Appl. Phys. Lett. 88, 222102 (2006)
    22. L. Pantisano, T. Schram, Z. Li, J. G. Lisoni, G. Pourtois, S. D. Gendt, D. P. Brunco, A. Akheyar, V. V. Afanas’ev, S. Shamuilia, and A. Stesmans, Ruthenium gate electrodes on SiO2 and HfO2: Sensitivity to hydrogen and oxygen ambients, Appl. Phys. Lett. 88, 243514 (2006)
    23. M. Hasan, H. Park, J.-M. Lee, and H. S. Hwang, Improved thermal stability of ruthenium oxide metal gate electrode on hafnium oxide gate dielectric, Appl. Phys. Lett. 91, 033512 (2007)
    24. B.-Y. Tsui, Wide Range Work Function Modulation of Binary Alloys for MOSFET Application, IEEE Electron Device Lett., vol. 24, NO.3, March 2003
    25. T.-L. Li, W.-L. Ho, H.-B. Chen, C.-H. Wang, C.-Y. Chang, Novel Dual-Metal Gate Technology Using Mo−MoSix Combination, IEEE Trans. on Electron Devices, VOL. 53, NO. 6, JUNE 2006
    26. E. K. Evangelou, N. Konofaos, X. A. Aslanoglou, C. A. Dimitriadis, P. Patsalas, S. Logothetidis, M. Kokkoris, E. Kossionides, R. Vlastou, and R. Groetschel, Characterization of magnetron sputtering deposited thin films of TiN for use as a metal electrode on TiN/SiO2/Si metal–oxide–semiconductor devices, J. Appl. Phys. 88, 7192 (2000)
    27. C.-S. Lai, S.-K. Peng, T.-M. Pan, J.-C. Wang, and K.-M. Fan, Work Function Adjustment by Nitrogen Incorporation in HfNx Gate Electrode with Post Metal Annealing, Electrochem. Solid-State Lett. 9, G239 (2006)
    28. N. V. Hoornick, H. D. Witte, T. Witters, C. Zhao, T. Conard, H. Huotari, J. Swerts, T. Schram, J. W. Maes, S. De Gendt, and M. Heyns, Evaluation of Atomic Layer Deposited NbN and NbSiN as Metal Gate Materials, J. Electrochem. Soc. 153, G437 (2006)
    29. B.-Y. Tsui, C.-F. Huang, and C.-H. Lu, Investigation of Molybdenum Nitride Gate on SiO2 and HfO2 for MOSFET Application, J. Electrochem. Soc. 153, G197 (2006)
    30. Y. Liang, C. Tracy, E. Weisbrod, P. Fejes, and N. D. Theodore, Effect of SiO2 incorporation on stability and work function of conducting MoO2, Appl. Phys. Lett. 88, 081901 (2006)
    31. Z. Li, T. Schram, A. Stesmans, A. Franquet, T. Witters, L. Pantisano, N. Yamada, T. Tsunoda, J. Hooker, S. De Gendt and K. De Meyer, Influence of metal capping layer on the work function of Mo gated metal-oxide semiconductor stacks, App. Phys. Lett. 93, 083511(2008)
    32. W. Wang, T. Nabatame, and Y. Shimogaki, Dielectric Evolution Characteristics of HfCN Metal-Electrode-Gated MOS Stacks, J. Electrochem. Soc. 154(2), G25-G29(2007)
    33. F. Y. Yen, C. L. Hung, Y. T. Hou, P. F. Hsu, V. S. Chang, P. S. Lim, L. G. Yao, J. C. Jiang, H. J. Lin, C. C. Chen, Y. Jin, S. M. Jang, H. J. Tao, S. C. Chen, and M. S. Liang, Effective Work Function Engineering of TaxCy Metal Gate on Hf-based Dielectrics, IEEE Electron Devices Lett., VOL. 28, NO. 3, MARCH 2007
    34. M. Suzuki, A. Kinoshita, T. Schimizu, and M. Koyama, Investigation of stability of the effective work function on LaAlO3 and La2Hf2O7, J. Appl. Phys. 105, 064105(2009)
    35. R. Singanamalla, H. Y. Yu, B. Van Daele, S. Kubicek, and K. De Meyer, Effective Work-Function Modulation by Aluminum-Ion Implantation for Metal-Gate Technology (Poly-Si/TiN/SiO2), IEEE Electron Devices Lett., VOL. 28, NO. 12, DECEMBER 2007
    36. J. K. Schaeffer, L. R. C. Fonseca, S. B. Samavedam, Y. Liang, P. J. Tobin and B. E. White, Contributions to the effective work function of platinum on hafnium dioxide, Appl. Phys. Lett. 85, 1826-1828(2004)
    37. A. Katagiri, M. Suzuki, and Z. -I. Takehara, Electrodeposition of tungsten in ZnBr2-NaBr and ZnCl2-NaCl melts, J. Electrochem. Soc. 138, 767 (1991)
    38. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams 2nd edition.
    39. E. H. Micollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, (Wiley, New Jersey, 2003)
    40. J. Chen, X. P. Wang, M. -F. Li, S. J. Lee, M. B. Yu, C. Shen, and Y. -C. Yeo, NMOS compatible work function of TaN metal gate with Erbium-oxide-doped Hafnium oxide gate dielectric, IEEE Electron Device Lett. 28, 862 (2007)
    41. P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, Microstructure, growth, resistivity, and stress in thin tungsten film deposited by rf sputtering, J. Appl. Phys. 44, 2545 (1973)
    42. H. O. Pierson, HANDBOOK OF REFRACTORY CARBIDES AND NITRIDES Properties, Characteristics, Processing and Applications.(Noyes Publications,1996)
    43. R. W. M. Kwok, XPSPEAK 4.0, Department of chemistry, The Chinese University of Hong Kong
    44. M. Repoux, COMPARISON OF BACKGROUND REMOVAL METHODS FOR XPS, Surf. Interface Anal. 18, 567 (1992)
    45. S.-J. Wang, C.-H. Chen, R.-M. Ko, Y.-C. Kuo, Preparation of tungsten oxide nanowires from sputter-deposited WCx films using an annealing/oxidation process, Appl. Phys. Lett. 86, 263103 (2005)
    46. J.Kovac, P. Panjan, A. Zalar, XPS analysis of WxCy thin films prepared by sputter deposition, Vacuum (2007), doi:10.1016/j.vacuum.2007.07.032
    47. K. A. Beadle, R. Gupta, A. Mathew, J. G. Chen, B. G. Willis, Chemical vapor deposition of phase-rich WC thin films on silicon and carbon substrates, Thin Solid Films (2007), doi:10.1016/j.tsf.2007.06.170
    48. D. A. Buchanan, F. R. McFeely, and J. J. Yurkas, Fabrication of midgap metal gates compatible with ultrathin dielectrics, Appl. Phys. Lett. 73, 1677 (1998)
    49. J. K. Schaeffer, C.Capasso, R. Gregory, D. Gllmer, L. R. C. Fonseca, M. Raymond, C. Happ, M. Kottke, S. B. Samavedam, P. J. Tobin, and B. E. White, Jr., Tantalum carbonitride electrodes and the impact of interface chemistry on device characteristics, J. Appl. Phys. 101, 014503 (2007)
    50. Z. Li, T. Schram, T. Witters, H.-J. Cho, B. O’Sullivan, N. Yamada, T. Takaaki, J. Hooker, S. De Gendt and K. De Meyer, Investigation on Molybdenum and Its Conductive Oxides as p-Type Metal Gate Candidates, J. Electrochem. Soc. 155(7), H481-H484 (2008)
    51. Y. Tsuchiya, M. Yoshiki, A. Kinoshita, M. Koyama, and J. Koga, M. Ogawa, S. Zaima, Physical mechanism of effective work function modulation caused by impurity segregation at Ni silicide/SiO2 interfaces, J. Appl. Phys. 102, 104504 (2007)
    52. Y. Tsuchiya, M. Yoshiki, K. Sekine, T. Saito, K. Nakajima, T. Aoyama, J. Koga, A. Nishiyama, M. Koyama, M. Ogawa and S. Zaima, Physical origin of suppressed effective work function modulation at boron segregated NiSi/SiON interface, J. Appl. Phys. 103, 124503 (2008)
    53. C. -H. Lu, G. M. T. Wong, M. D. Deal, W. Tsai, P. Majhi, C. O. Chui, M. R. Visokay, J. J. Chambers, L. Colombo, B. M. Clemens, and Y. Nishi, Characteristics and mechanism of tunable work function gate electrodes using a bilayer metal structure on SiO2 and HfO2, IEEE Electron Device Lett. 26, 445 (2005)
    54. I. -S. Park, H. -K. Ko, T. Lee, J. Park, D. -K. Choi, J. Ahn, M. -H. Park, and C. -W. Yang, Work function shift mechanism of metal-gate electrode with Ru/Ti bilayer, Electrochem. Solid-State Lett. 10, H63 (2007)

    下載圖示 校內:2011-08-10公開
    校外:2012-08-10公開
    QR CODE