簡易檢索 / 詳目顯示

研究生: 簡卉菁
Chien, Hui-Ching
論文名稱: 利用二茂鐵硼酸為媒子之電化學式感測糖化血紅素
Using Ferroceneboronic Acid as Mediator for Electrochemical Sensing of Glycosylated Hemoglobin
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 糖尿病糖化血紅素糖化纈胺酸玻璃碳膠電極二茂鐵硼酸感測器
外文關鍵詞: Diabetes, Glycosylated hemoglobin (HbA1c), Fructosyl valine (Fru-Val), Glassy carbon paste electrode (GCPE), Ferroceneboronic acid (FcBA), Sensor
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型糖尿病,又稱為成人型糖尿病、肥胖型糖尿病或非胰島素型糖尿病,是一種慢性疾病,影響全球超過三億的人口。雖然糖尿病無法治癒,但維持血糖濃度在正常範圍之內以避免併發症的發生則是可以做到的。葡萄糖與糖化血紅素是目前診斷糖尿病之重要指標。糖化血紅素代表過去2-3個月之平均血糖濃度。因此,糖化血紅素相較於快速波動的葡萄糖是更能作為診斷糖尿病的長期生物指標。現今,葡萄糖感測器已廣泛使用在糖尿病的診斷上,但居家型糖化血紅素感測器仍未商品化。
    本研究之目的在開發一電極材料,應用在糖化血紅素之目標分子糖化纈胺酸之感測上,期待所設計之感測器能夠符合糖尿病病患之臨床診斷標準。以自製的玻璃碳膠電極(GCPE)作為工作電極,應用在電化學式糖化纈胺酸之感測上,於pH 7.4的磷酸鹽緩衝溶液中進行電化學測試。實驗結果顯示,糖化纈胺酸濃度與感測電流呈一線性關係,其線性偵測範圍在0至1 mM (0-0.358μg/dL),其相關系數的平方為0.999,而靈敏度為167.5 μA/mM cm2,最小偵測極限為0.05 mM (0.018μg/dL)。
    在新型電流式感測系統中,可以額外添加二茂鐵硼酸作為媒介分子在0.1V電位下進行糖化纈胺酸感測,因為由於二茂鐵硼酸能與雙醇分子形成錯合物並具有極佳的氧化還原電化學性質,所以,二茂鐵硼酸分子可以作為傳遞的媒介,藉由亞鐵/鐵離子的氧化還原,促使硼酸基團與糖化纈胺酸形成錯合物。在糖化纈胺酸生物感測器中,利用GCPE作為工作電極在3 mM的二茂鐵硼酸溶液中針對目標分子進行感測,結果顯示偵測範圍為0.5-4 mM (0.19-1.43μg/dL),最小偵測極限為0.5 mM,應答時間為10秒。

    Type-2 diabetes, also known as adult-onset diabetes, obesity-related diabetes or noninsulin-dependent diabetes mellitus, is a common chronic disease affecting more than 300 million people globally. Although incurable, the condition can be managed by maintaining blood glucose at a normal level. This is important to avoid serious complications. Glucose and glycosylated hemoglobin (HbA1c) are presently the important diagnostic targets. The relative amount of HbA1c reflects the average blood glucose concentration during the past 2-3 months; it is therefore able to serve as a long-term diagnostic marker, rather than the rapidly fluctuating glucose level. Currently, glucose sensors are routinely used for the diagnosis of the condition; however, an electrochemical HbA1c sensing system has not yet been commercialized in homecare.
    An electrode material for sensing fructosyl valine (Fru-Val), a component of HbA1c, has been developed as a potential route towards the determination of physiological HbA1c levels in diabetic patients. A bare glassy carbon paste electrode (GCPE) was fabricated as the working electrode for sensing Fru-Val electrochemically in phosphate buffer (pH 7.4). A linear relationship between Fru-Val concentration and the sensing current was shown. The square correlation coefficient (R2) and the sensitivity of this biosensor were 0.999 and 167.5 μA/mM cm2, respectively. The minimum detection limit of the GCPE for Fru-Val was less than 0.05 mM.
    A new diagnostic system, incorporating an amperometric method, for detecting Fru-Val (at +0.1 V vs. Ag/AgCl), using ferrocene boronic acid (FcBA) as a mediator is presented here. FcBA can form complex with diols, and has easily detectable redox properties. The boronic acid group in FcBA mediates complexation, while the FeⅡ/FeⅢ couple serves as a transducer. The Fru-Val biosensor using the GCPE as the working electrode in 3 mM FcBA solution could measure the target analyte (Fru-Val) in the 0.5 to 4 mM concentration range. The minimum detection limit was less than 0.5 mM for Fru-Val. The response time was 10 s.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 何謂糖尿病 3 1.3 研究動機與目的 6 第二章 文獻回顧與原理 8 2.1 感測器的簡介 8 2.2 糖化血紅素(glycosylated hemoglobin, HbA1c)的簡介 10 2.3 糖化血紅素的檢測方式 15 2.4 硼酸及其衍生物的分子特性 28 2.4.1 硼酸分子特性及其應用 28 2.4.2 硼酸分子於感測器之應用 31 2.4.3 二茂鐵硼酸分子特性 35 2.5 電化學分析技術原理 36 2.5.1 循環伏安法 36 2.5.2 電流分析法 37 2.6 實驗架構 38 第三章 實驗設備與研究方法 40 3.1 實驗藥品、材料與儀器設備 40 3.1.1 實驗藥品 40 3.1.2 材料 41 3.1.3 儀器設備 42 3.2 實驗方法 43 3.2.1 合成糖化纈胺酸分子 43 3.2.2 感測電極之製備 44 3.2.2.1 厚膜印刷技術製備白金電極 44 3.2.2.2 玻璃碳膠電極製備 44 3.2.2.3 玻璃碳膠電極表面形態分析 45 3.2.3 實驗設備 45 3.2.4 糖化纈胺酸分子之電化學特性分析 45 3.2.4.1 電極電化學前處理 45 3.2.4.2 循環伏安分析法 46 3.2.4.3 定電位法與極化曲線 46 3.2.4.4 應答電流法 47 3.2.4.5 干擾物質測試 48 第四章 結果與討論 49 4.1 糖化纈胺酸分子結構之特性分析 49 4.1.1 Fru-Val樣品之元素分析 49 4.1.2 Fru-Val分子結構之C-N鍵的確認 50 4.2 電化學特性分析 51 4.2.1 Fru-Val各種感測電極之循環伏安分析測試 51 4.2.2 GCPE表面SEM分析 57 4.2.3 極化曲線 59 4.2.4 應答電流曲線 61 4.2.5 酸鹼值 61 4.2.6 干擾性測試 63 4.3 二茂鐵硼酸為媒子之電化學測試 67 4.3.1 添加媒介分子於溶液中之循環伏安分析實驗 67 4.3.2 不同濃度的二茂鐵硼酸溶液中循環伏安分析法測試 74 4.3.3 應答電流與干擾測試 77 4.3.4 反應機構 82 4.3.5 溶液酸鹼值對反應電位的影響 90 第五章 結論 93 第六章 未來方向 94 第七章 參考文獻 95 附錄 A 糖化血紅素感測晶片之製作 101 附錄 B 比色法 (Colorimetry) 105 論文著作 107

    1. World Health Organization, http://www.who.int/diabetes/
    2. American Diabetes Association, http://www.diabetes.org/
    3. D. M. Nathan, J. Kuenen, R. Borg, H. Zheng, D. Schoenfeld, R. J. Heine, “Translating the A1C assay into estimated average glucose values,” Diabetes Care 31, 1473, 2008.
    4. V. Poitout, D. Moatti-Sirat, G. Reach, Y. Zhang, G. S. Wilson, F. Lemonnier, J. C. Klein, “A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit,” Diabetologia 36, 658, 1993.
    5. J. D. Newman, A. P. F. Turner, “Home blood glucose biosensors: a commercial perspective,” Biosens. Bioelectron. 20, 2435, 2005.
    6. J. Shen, “Development & Characterization of thick-film printed electrochemical biosensor,” Case Western Reserve University Department of Chemical Engineering, 2007.
    7. J. Janata, Principles of Chemical Sensors, Plenum Press, New York, 1989.
    8. H. F. Bunn, K. H. Gabbay, P. M. Gallop, “The Glycosylation of Hemoglobin: Relevance to Diabetes Mellitus,” Science 200, 21, 1978.
    9. http://www.baileybio.com/plogger/?level=picture&id=490.
    10. L. A. Kaplan, A. J. Pesce, “Clinical chemistry: theory, analysis, and correlation,” Mosby, St. Louis, USA, 1996.
    11. D. W. Allen, W. A. Shroeder, J. Balog, “Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content,” J. Am. Chem. Soc. 80, 1628, 1958.
    12. W. R. Holmquist, and W. A. Schroeder, “A new N-terminal blocking group involving a schiff base in hemoglobin AIc,” Biochemistry 5, 2489, 1966.
    13. R. M. Bookchin, P. M. Gallop, “Structure of hemoglobin AⅠc: nature of the N-terminal beta chain blocking group,” Biochem. Biophys. Res. Commun. 32, 86, 1968.
    14. R. J. Koeing, S. H. Blobstein, A. Cerami, “Structure of carbohydrate of hemoglobin A1c,” J. Biol. Chem. 252, 2992, 1977.
    15. P. Keil, H. B. Mortensen, C. Christophersen, “Fructosylvaline. A simple model of the N-terminal residue of human haemoglobin A1c,” Acta Chem. Scand. B. 39, 191, 1985.
    16. S. Rahbar, O. Blumenfeld, H. M. Ranney, “Studies of an unusual hemoglobin in patients with diabetes mellitus,” Biochem. Biophys. Res. Commun. 36, 838, 1969.
    17. R. J. Koenig, C. M. Peterson, R. L. Jones, C. Saude, M. Lehman, A. Cerami, “Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus,” N. Engl. J. Med. 295, 417, 1976.
    18. R. J. Koenig, C. M. Peterson, C. Kilo, A. Cerami, J. R. Williamson, “Hemoglobin Alc as an indicator of the degree of glucose intolerance in diabetes,” Diabetes 25, 230, 1976.
    19. K. H. Gabbay, K. Hasty, J. L. Breslow, R. C. Ellison, H. F. Bunn, P. M. Gallop, “Glycosylated hemoglobins and long-term blood glucose control in diabetes mellitus,” J. Clin. Endocrinol. Metab. 44, 859, 1977.
    20. D. M. Nathan, H. Turgeon, S. Regan, “Relationship between glycated haemoglobin levels and mean glucose levels over time,” Diabetologia 50, 2239, 2007.
    21. American Diabetes Association, http://www.diabetes.org/for-media/ 2009/international-expert, 2009.
    22. D. Goldstein, K. Parker, J. England, “Clinical application of glycosylated hemoglobin measurements,” Diabetes 31, 70, 1982.
    23. Y. Nanjo, R. Hayashi, T. Yao, “An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer,” Anal. Chim. Acta 583, 45, 2007.
    24. W. G. John, “Glycated haemoglobin analysis,” Ann. Clin. Biochem. 34, 17, 1997.
    25. D. E. Goldstein, R. R. Little, H. M. Wiedmeyer, J. D. England, E. M. Mckenzie, “Glycated Hemoglobin:Methodologies and Clinical Applications,” Clin. Chem. 32, 10, B64, 1986.
    26. American Diabetes Association, “Implications of the United Kingdom Prospective Diabetes Study,” Diabetes Care, 25, s28, 2002.
    27. D. Koval, V. Kašička, H. Cottet, “Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelect ric focusing ,” Anal. Biochem. 413, 8, 2011.
    28. W. Clarke, D. Hage, “Clinical Applications of Affinity Chromatography,” Separation and Purification Reviews, 32, 1, 19, 2003.
    29. D. S. Hage, Affinity chromatography. In: E. Katz, R. Eksteen, P. Shoenmakers, N. Miller, eds. Handbook of HPLC, Marcel Dekker, New York, Chap. 13, 1998.
    30. A. K. Mallia, G. T. Hermanson, R. I. Krohn, E. K. Fujimoto, P. K. Smith, “Preparation and use of a boronic acid affinity support for the separation and quantitation of glycosylated hemoglobins,” Anal. Lett. 14, 649, 1981.
    31. B. J. Gould , P. M. Hall, J. G. H. Cook, “Measurement of glycosylated haemoglobins using an affinity chromatography method,” Clin. Chim. Acta 125, 41, 1982.
    32. S. Hjerten, J. P. Li, “High-performance liquid chromatography of proteins on deformed nonporous agarose beads: fast boronate affinity chromatography of haemoglobin at neutral pH,” J. Chromatogr. 500, 543, 1990.
    33. N. Kitagawa, L. G. Treat Clemens, “Chromatographic study of immobilized boronate stationary phases,” Anal. Sci. 7, 195, 1991.
    34. R. P. Singhal, S. S. M. DeSilva, “Boronate affinity chromatography,” Adv. Chromatogr. 31, 293, 1992.
    35. K. P. Peterson, J. G. Pavlovich, D. Goldstein, R. Little, J. England, C. M. Peterson, “what is hemoglobin A1c? An analysis of glycated hemoglobins by electrospray ionization mass spectrometry,” Clin. Chem. 44, 1951, 1998.
    36. R. S. Yalow, S. A. Berson, “Immunoassay of endogenous plasma insulin in man,” J. Clin. Invest. 39, 7, 1157, 1960.
    37. D. Stöllner, W. Stöcklein, F. Scheller, A. Warsinke, “Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor,” Anal. Chim. Acta. 470, 111, 2002.
    38. D. Stöllner, A. Warsinke, W. Stöcklein, R. Dölling, F. Scheller, “Immunochemical Determination of Hemoglobin-A1c Utilizing a Glycated Peptide as Hemoglobin-A1c Analogon,” TÜBINGEN 2001.
    39. C. W. Weykamp, T. J. Penders, C. W. M. Siebelder, F. A. J. Muskiet, W. V. D. Slik, “Interference of carbamylated and acetylated hemoglobins in assays of glycohemoglobin by HPLC, electrophoresis, affinity chromatography, and enzyme immunoassay,” Clin. Chem. 39, 138, 1993.
    40. S. Ferri, S. Kim, W. Tsugawa, K. Sode, “Review of fructosyl amino acid oxidase engineering research: a glimpse into the future of hemoglobin A1c biosensing,” J. Diabetes Sci. Technol. 3, 585, 2009.
    41. S. Y. Song, H. C. Yoon, “Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing,” Sens. Actua. B 140, 233, 2009.
    42. W. Tsugawa, F. Ishimura, K. Ogawa, K. Sode, “Development of an enzyme sensor utilizing a novel fructosyl amine oxidase from a marine yeast,” Electrochem. 68, 11, 869, 2000.
    43. W. Tsugawa, K. Ogawa, F. Ishimura, K. Sode, “Fructosyl amine sensing based on Prussian blue modified enzyme electrode,” Electrochem. 69, 12, 973, 2001.
    44. H. G. Kuivila, A. H. Keough, E. J. Soboczenski, “Areneboronates from diols and polyols,” J. Org. Chem. 19, 780, 1954.
    45. J. P. Lorand, J. O. Edwards, “Polyol complexes and structure of the benzeneboronate ion,” J. Org. Chem. 24, 769, 1959.
    46. G. Springsteen, B. Wang, “A detailed examination of boronic acid-diol complexation,” Tetrahedron, 58, 5291, 2002.
    47. W. Wang, X. Gao, B. Wang, “Boronic acid-based sensors,” Curr. Org. Chem. 6, 1285, 2002.
    48. E. Shoji, M. S. Freund, “Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid),” J. Am. Chem. Soc. 124, 12486, 2002.
    49. S. Arimori, M. L. Bell, C. S. Oh, K. A. Frimat, T. D. James, “Modular fluorescence sensors for saccharides,” J. Chem. Soc., Perkin Trans. 1, 6, 803, 2002.
    50. J. Y. Park, B. Y. Chang, H. Nam, S. M. Park, “Selective electrochemical sensing of glycated Hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem. 80, 8035, 2008.
    51. J. Přibyl, P. Skládal, “Quartz crystal biosensor for detection of sugars and glycated hemoglobin,” Anal. Chim. Acta 530, 75, 2005.
    52. R. E. Reddy, Y. Pan, D. D. Johnson, Y. Y. Chen, S. A. Datwyler, M. S. Hauptman, J. K. Thottathil, “An efficient preparation of polyanionic affinity agent and its evaluation for the measurement of glycated hemoglobin,” Bioorg. Med. Chem. 13, 3467, 2005.
    53. S. U. Sona, J. H. Seo, Y. H. Choi, S. S. Lee, “Fabrication of a disposable biochip for measuring percent hemoglobin A1c (%HbA1c),” Sens. Actua. A 130-131, 267, 2006.
    54. S. Y. Song, H. C. Yoon, “Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing,” Sens. Actua. B 140, 233, 2009.
    55. A. F. Bard, L. R. Faulkner, Electrochemical Methods:Fundamentals and Applications, John Wiley & Sons, New York, 2001.
    56. R. Rajkumar, A. Warsinke, H. Möhwald, F. W. Scheller, M. Katterle, “Development of fructosyl valine binding polymers by covalent imprinting,” Biosens. Bioelectron. 22, 3318, 2007.
    57. J. Wang, Ü. A. Kirgöz, J. W. Mo, J. Lu, A. N. Kawde, A. Muck, “Glassy carbon paste electrodes,” Electrochem. Commun. 3, 203, 2001.
    58. H. C. Chien, and T. C. Chou, “Glassy carbon paste electrodes for the determination of fructosyl valine,” Electroanalysis 22, 688, 2010.
    59. L. J. Bjelica, L. S. Jovanovic, “Activation of glassy carbon electrode in aqueous and non-aqueous media,” Electrochim. Acta 37, 371, 1992.
    60. C. B. Bottom, S. S. Hanna, D. J. Siehr, “Mechanism of the ninhydrin reaction,” Biochem. Educ. 6, 4, 1978.
    61. K. Sode, S. Ohta, Y. Yanai, T. Yamazaki, “Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor,” Biosens. Bioelectron. 18, 1485, 2003.
    62. M. C. Chuang, M. C. Yang, “A study on monitoring of vinyl chloride gas by an indirect sensing method,” J. Electrochem. Soc. 150, H99, 2003.
    63. R. N. Johnson, P. A. Metcalf, J. R. Baker, “Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control,” Clin. Chim. Acta 127, 87, 1983.
    64. A. Ori, S. Shinkai, “Electrochemical detection of saccharides by the redox cycle of a chiral ferrocenylboronic acid derivative: a novel method for sugar sensing,” J. Chem. Soc., Chem. Commun. 17, 1771, 1995.
    65. A. N. J. Moore, D. D. M. Wayner, “Redox switching of carbohydrate binding to ferrocene boronic acid,” Can. J. Chem. 77, 681, 1999.
    66. S. Miura, S. Ferri, W. Tsugawa, S. Kim, K. Sode, “Development of fructosyl amine oxidase specific to fructosyl valine by site-directed mutagenesis,” Protein Eng., Des. & Sel. 21, 233, 2008.
    67. T. D. James, M. D. Phillips, S. Shinkai, “Boronic Acids in Saccharide Recognition,” RSC Publishing, Cambridge, 13, 2006.
    68. Hui-Ching Chien, Tse-Chuan Chou, “A Nonenzymatic Amperometric Method for Fructosyl-Valine Sensing Using Ferroceneboronic Acid,” Electroanalysis, 23, 2, 402, 2011.
    69. L. Fang, W. Li, Y. Zhou, C. C. Liu, “A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection”, Sens. Actuators B 129, 1485, 2008.
    70. C. J. Huang, H. C. Chien, T. C. Chou, G. B. Lee, “Integrated microfluidic system for electrochemical sensing of glycosylated hemoglobin,” Microflui. Nanoflui. 10, 1, 37, 2011.

    下載圖示 校內:2018-02-06公開
    校外:2018-02-06公開
    QR CODE