簡易檢索 / 詳目顯示

研究生: 林其汶
Lin, Chi-Wen
論文名稱: 鋁奈米粒子/氧化鎂鎳金屬-半導體-金屬紫外光檢測器之研究
MgNiO–based metal-semiconductor-metal ultraviolet photodetectors with aluminium nanoparticles
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化鎂鎳熱退火處理金屬-半導體-金屬光檢測器濺鍍系統紫外光檢測器
外文關鍵詞: Magnesium nickel oxide, Metal-semiconductor-metal photodetector, Sputter system, Ultraviolet photodetector
相關次數: 點閱:124下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用寬能隙材料的氧化鎂摻雜氧化鎳,進而沉積高品質的氧化鎂鎳薄膜。為了提升氧化鎂鎳薄膜之品質,對薄膜進行不同溫度之熱退火處理,進而提升元件特性。為了使元件光響應度以及檢測度提升,利用不同塗布轉速將鋁奈米粒子塗布於元件上,當入射光照射元件時,鋁奈米粒子會產生表面電漿共振導致光散射效應發生,使光路徑增加,故更多的光子被吸收層吸收,進而提升元件特性。
    本論文先分析不同熱退火溫度對薄膜品質與元件特性的影響。由實驗結果顯示,熱退火處理有效提升氧化鎂鎳薄膜之品質,為了分析不同退火溫度對元件的影響,本研究進行元件暗電流之量測並計算響應度、低頻雜訊功率與偵測度。當熱退火溫度為500℃且外加偏壓為5 V時,元件之暗電流為85.5 pA,而當入射光源之波長為320 nm時,元件的響應度為0.018 A/W。然後利用旋轉塗布將鋁奈米粒子塗布於元件上,且塗布轉速為1000 rpm時,其元件特性有效提升,當外加偏壓為5 V時,其元件暗電流為1.46 nA,而當入射光源之波長為320 nm時,元件的響應度為0.199 A/W。由數據比較顯示,塗布鋁奈米粒子之元件,其響應度特性顯著提升,且兩者之紫外光-可見光拒斥比皆大於兩個級數,具有鋁奈米粒子的元件之等效雜訊功率從1.99x10-10 W下降至3.89×10-11 W,元件檢測度則由1.59x109 cmHz0.5W-1上升至 8.14x109 cmHz0.5W-1。

    In this study, the high quality MgNiO film was deposited on the quartz substrate by co-sputtering of NiO and MgO. To improve the film quality, the MgNiO film was treated by the thermal annealing method. To enhance the performance of the MgNiO-based photodetector, the Al nanoparticles were coated on the device. In the illumination status, the surface plasmon resonance caused by Al nanoparticles was obtained. Therefore, the light scattered in the absorption layer leading to the photons more absorbed in the absorption layer. As the experiment results, the quality of MgNiO films were improved by the thermal annealing method. When annealed at 500°C, the dark current and responsivity of MgNiO-based photodetector were 85.5 pA and 0.018 A/W, respectively. The MgNiO-based photodetector was improved by coating Al nanoparticles on the device. The dark current and responsivity of the MgNiO-based photodetector were 1.46 nA, 0.199 A/W, respectively. As the results, the responsivity of the Al nanoparticles/MgNiO photodetector was greater than the one of MgNiO photodetector without Al nanoparticles. The UV-visible rejection ratio of the MgNiO-based photodetector and Al nanoparticles/MgNiO photodetector was larger than two orders.

    摘要.... I Abstract....III 致謝....IX 目錄.... X 表目錄....XV 圖目錄....XVI 第一章 序論....1 1.1氧化鎳鎂材料....1 1.2紫外光檢測器....2 1.3研究動機....3 第二章 實驗及原理簡介....11 2.1物理氣相沉積系統....11 2.1.1物理氣相沉積技術....11 2.1.2射頻濺鍍系統原理....11 2.2 表面電漿共振原理....12 2.2.1金屬奈米粒子的表面電漿共振....12 2.2.2金屬奈米粒子的光散射現象....13 2.3 光檢測器....13 2.3.1光吸收與光放射....13 2.3.2薄膜穿透率與光學能隙計算....13 2.4 金屬半導體接面理論.... 14 2.4.1歐姆接觸....15 2.4.2蕭特基接觸....15 2.5 光檢測器工作原理....18 2.5.1金屬-半導體-金屬光檢測器工作原理....19 2.5.2電壓電流特性曲線....20 2.5.3光檢測器之響應度、外部量子效率....21 2.6 低頻雜訊....22 2.6.1產生-復和雜訊....22 2.6.2閃爍雜訊....23 2.6.3熱雜訊....23 2.6.4等效雜訊功率及偵測度....24 第三章 元件製程....33 3.1製程機台....33 3.1.1 電子束蒸鍍系統....33 3.1.2磁控射頻共濺鍍系統....33 3.2量測儀器....34 3.2.1 X光繞射分析儀(XRD)....34 3.2.2能量分散式光譜儀(EDS)....34 3.2.3 UV-VIS-NIR分光光譜儀....35 3.2.4響應度量測系統....35 3.2.5低頻雜訊量測系統....36 3.2.6掃描式電子顯微鏡....36 3.3元件製程....37 3.3.1 石英玻璃(Quartz)基板之清潔....37 3.3.2元件吸收層之沉積....38 3.3.3 薄膜熱退火處理....38 3.3.4元件吸收層區域之定義....39 3.3.5 元件絕緣層製程....39 3.3.6 指叉狀電極之定義....40 3.3.7指叉狀電極之製作....41 3.3.8奈米鋁粒子之製備....41 第四章 元件特性量測與分析....50 4.1吸收層薄膜之量測與分析....50 4.1.1氧化鎂鎳薄膜穿透率....50 4.1.2能量分散式光譜儀量測....51 4.1.3 X光繞射量測、FWHM & Grain size之計算 ....51 4.1.4氧化鎂鎳薄膜電阻率量測....52 4.2 氧化鎂鎳光檢測器特性量測....53 4.2.1 元件暗電流量測....53 4.2.2 元件響應度量測....53 4.2.3 元件低頻雜訊量測....54 4.3 鋁奈米粒子/氧化鎂鎳元件特性量測....55 4.3.1鋁奈米粒子之密度量測....56 4.3.2元件暗電流量測....56 4.3.3元件響應度量測....56 4.3.4薄膜吸收度量測....57 4.3.4元件低頻雜訊量測....58 第五章 結論....79

    第一章
    [1]Y. H. Kwon, S. H. Chun, and H. K. Cho, “Controllable band-gap engineering of the ternary MgxNi1−xO thin films deposited by radio frequency magnetron sputtering for deep ultra-violet optical devices,” Thin Solid Films, vol. 529, pp. 417–420, 2013.
    [2]Y. Guo, L. Zhu, J. Jiang, Y. Li, L. Hu, H. Xu, and Z. Ye, “Enhanced performance of NiMgO-based ultraviolet photodetector by rapid thermal annealing,” Thin Solid Films, vol. 558, pp. 311-314, 2014.
    [3]E. Monroy, F. Calle, E. Muñoz, and F. Omnès, “AlGaN met-al–semiconductor–metal photodiodes,” Appl. Phys. Lett, Vol. 74, pp. 3401-3403, 1999.
    [4]R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High quantum efficiency AlGaN solar-blind p-i-n photodiodes,” Appl. Phys. Lett, Vol. 84, pp. 1248-1250, 2004.
    [5]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes,” Appl. Phys. Lett, Vol. 74, pp. 1171-1173, 1999.
    [6]D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X. H. Zhang, and M. Razeghi, “Solar-blind AlGaN photodiodes with very low cutoff wavelength,” Appl. Phys. Lett, vol. 76, pp. 403-405, 2000.
    [7]Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, C. Z. Gu, and X. L. Du, “Dual-band MgZnO ultraviolet photodetector integrated with Si,” Appl. Phys. Lett, vol. 102, pp. 153510-1-153510-4, 2013.
    [8]Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, S. Liang, C. Z. Gu, and X. L. Du, “Comparative study of n-MgZnO/p-Si ultraviolet-B photodetector performance with different device structures,” Appl. Phys. Lett, vol. 98, pp. 263501-1-263501-3, 2011.
    [9]D. Jianga, J. Qina, X. Zhanga, Z. Baia, and D. Shenc, “Ultraviolet photodetectors with MgZnO nanowall networks grown by molecular beam epitaxy on Si(1 1 1) substrates,” Materials Science and Engineering B, vol. 176, pp. 736-739 , 2011.
    [10]C. Z. Wu, L. W. Ji, S. M. Peng, Y. L. Chen, and S. J. Young, “MgZnO Nanorod Homojunction Photodetectors for Solar-Blind Detection,” Electrochemical and Solid-State Letters, vol. 14, pp. J55-J57, 2011.
    [11]H. Nishitani, K. Ohta, S. Kitano, R. Hamano, M. Inada, T. Shimizu, S. Shingubara, H. Kozuka, and T. Saitoh, “Band gap tuning of Ni1-xMgxO films by radio-frequency sputter deposition for deep-ultraviolet photodetectors,” Appl. Phys. Express, vol. 8, pp. 105801-1-106801-3, 2015.
    [12]Y. Zhao, J. Zhang, D. Jiang, C. Shan, Z. Zhang, B. Yao, D. Zhao and D. Shen, “MgNiO-based metal–semiconductor–metal ultraviolet photodetector,” J. Phys. D: Appl. Phys, Vol. 42. pp. 092007-1-092007-4, 2009.
    [13]Y. H. Kwon, S. H. Chun, and H. K. Cho, “Semiconducting p-type MgNiO:Li epitaxial films fabricated by cosputtering method,” J. Vac. Sci. Technol. A, Vol. 31, pp. 041501-1-041501-5, 2013.
    [14]Z. G. Yang, Li. P. Zhu, Y. M. Guo, Z. Z. Ye, and B. H. Zhao, “Preparation and band-gap modulation in MgxNi1−xO thin films as a function of Mg contents,” Thin Solid Films, vol. 519, pp. 5174–5177, 2011.
    [15]J. W. Mares, R. C. Boutwell, M. Wei, A. Scheurer, and W. V. Schoenfeld, “Deep-ultraviolet photodetectors from epitaxially grown NixMg1−xO,” Appl. Phys. Lett, vol. 97, pp. 16113-1-16113-3, 2010.
    [16]T. T. Zhou, B. Lu, C. J. Wu, Z. Z. Ye, J. G. Lu, and X. H. Pan, “Correlation of ZnO orientation to band alignment in p-Mg0.2Ni0.8O/n-ZnO interfaces,” J. Appl. Phys, vol. 114, pp. 143707-1-143707-5, 2013.
    [17]G. Li, J. Zhang and X. Hou, “High-responsivity UV detectors based on MgNiO films grown by magnetron sputtering,” Europhys. Lett, vol. 106, pp. 38002-1-38002-5, 2014.
    [18]L. Cao, X. Li, D. Wang, and L. Zhu, “Li-doped NiMgO thin films as a promising p-type transparent conductive material with wide band-gap,” Materials Letters, vol. 110, pp. 73–75, 2013.
    [19]R.C. Boutwell, M. Wei, A. Scheurer, J.W. Mares, and W.V. Schoenfeld, “Optical and structural properties of NiMgO thin films formed by sol–gel spin coating,” Thin Solid Films, vol. 520, pp. 4302–4304, 2012.
    [20]Z. Ji, Z. He, K. Liu, S. Zhao, and Z. He, “Synthesis of MgxNi1_xO thin films with a band-gap in the solar-blind region,” Journal of Crystal Growth, vol. 273, pp. 446-450, 2005.
    [21]H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, “Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering,” IEEE Photonics Techno. Lett, vol. 20, pp. 2108-2110, 2008.
    [22]Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, and M. Asif Khan, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection,” Appl. Phys. Lett, vol. 70, pp.2277-2279, 1997.
    [23]K. Lee, K. T. Kim, J. M. Choi, M. S. Oh, D. K. Hwang, S. Jang, E. Kim, and S. Im, “Improved dynamic properties of ZnO-based photo-transistor with polymer gate dielectric by ultraviolet treatment,” J. Phys. D: Appl. Phys, vol.41, pp. 135102-1-135102-5, 2008.
    [24]W. W. Liu, B. Yao, B. H. Li , Y. F. Li, J. Zheng , Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, and X. W. Fan, “MgZnO/ZnO p-n junction UV photodetector fabricated on sapphire substrate by plasma-assisted molecular beam epitaxy,” Solid State Sci, vol. 12, pp. 1567-1569, 2010.
    [25]X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagon-al-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett, vol. 4, pp. 423-426, 2004.
    [26]K. Wang, Y. Vygranenko, and A. Nathan, “ZnO-based p-i-n and n-i-p heterostructure ultraviolet sensors: a comparative study,” J. Appl. Phys, vol. 101, pp. 114508-1-114508-5, 2007.
    [27]L. Li, Y. Ryu, H. W. White, and P. Yu, “Characterization of ZnO UV photoconductors on the 6H-SiC substrate,” Proc. SPIE, vol. 7603, pp.760310-1-760310-8, 2010.
    [28]K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
    [29]G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C, vol. 112, pp. 13958–13963, 2008.
    [30]P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev, vol. 4, pp. 795-808, 2010.
    [31]H. A. Atwater, Albert Polman, “ Plasmonics for improved photovoltaic devices,” Nat. Mater, vol. 9, pp. 205-213, 2010.

    第二章
    [1]S. M. Rossnagela, “Thin film deposition with physical vapor deposition and related technologies,” J. Vac. Sci. Technol. A, Vol. 21, pp. S74-S87, 2003.
    [2]K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
    [3]P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, No. 6, pp. 795-808, 2010.
    [4]S. S. Kumar, E. J. Rubio, M. Noor-A-Alarm, G. Martonez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films, ” J. Phys. Chem. C, vol. 117, pp. 4194-4200, 2013.
    [5]S. M. Sze, “Physics of semiconductor devices 2nd,” 1987.
    [6]Neamen, “Semiconductor Photonics Principles and Practices,” 2003.
    [7]R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional,ordered array of small latex particles,” Langmuir, vol. 11, pp. 3333-3336, 1995.
    [8]S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron, vol. 14, pp. 1209-1218, 1971.
    [9]S. O. Kasap, “Optoelectronics and photonics principles and practices,” 2001.
    [10]F. N. Hooge, “l/f Noise sources,” IEEE Trans. Electr. Dev, vol. 41, pp. 1926-1935, 1994.
    [11]A. A. Balandin, “Noise and fluctuations control in electronics devices,” California, USA, 2002.

    第四章
    [1]R. C. Boutwell, M. Wei, A. Scheurer, J. W. Mares, and W. V. Schoenfeld, “Optical and structural properties of NiMgO thin films formed by sol–gel spin coating,” Thin Solid Films, vol. 520, pp. 4302-4304, 2012.
    [2]J. L. Yang, Y. S. Lai, and J. S. Chen, “Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering,” Thin Solid Films, vol. 488, pp. 242- 246, 2005.
    [3]G.H. Yue, W. Wang, L. S. Wang, X. Wang, P. X. Yan, Y. Chen, and D. L. Peng, “The effect of anneal temperature on physical properties of SnS films,” J. Alloy. Compd, vol. 474, pp. 445-449, 2009.

    無法下載圖示 校內:2021-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE