| 研究生: |
陳姿羽 Chen, Zi-Yu |
|---|---|
| 論文名稱: |
探討奈米銀粒子於果蠅模式中誘發的氧化壓力所造成之細胞毒性機轉 Silver nanoparticles (AgNPs) induce ROS-mediated cellular damages in Drosophila |
| 指導教授: |
顏賢章
Yan, Shian-Jang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 奈米銀 、氧化壓力 |
| 外文關鍵詞: | Silver nanoparticles, oxidative stress |
| 相關次數: | 點閱:131 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年奈米銀 ( Silver nanoparticles, AgNPs ) 大量應用於各類不同的產品中,如醫療和工業產業之中,這意味著這將增加人類暴露奈米銀的風險。最近研究已顯示奈米銀會活化許多細胞毒性途徑,但是我們目前仍不清楚奈米銀在生物體內是藉由何種分子以及細胞機轉導致毒性,因此我們使用了果蠅(Drosophila)作為體內模式系統來探討奈米銀導致細胞損壞的機轉。我們證實透果蠅的幼蟲透過飲食暴露奈米銀後,會增加幼蟲與蛹的死亡率,並減少成蟲的羽化率。機轉上,我們發現奈米銀會誘導大量的活性氧化物 ( Reactive oxygen species )的產生及劑量相關地活化Nrf2 抗氧化訊號路徑,除此之外亦發現奈米銀會活化細胞自噬作用 (Autophagy),DNA 損傷( DNA damage )以及細胞凋亡 (Apoptosis )。此外,幼蟲暴露奈米銀也會劑量濃相關地減少成蟲果蠅的壽命。有趣的事是, Nrf2 抗氧化訊號路徑下游基因 superoxide dismutase (SOD)和catalase (CAT)表現量在幼蟲期暴露過奈米銀的年輕果蠅成蟲會上升,但年老果蠅卻下降的。綜合以上我們已證明奈米銀暴露後會導致各種ROS 介導的細胞毒性效應,並透過降低抗氧化能力對健康/壽命產生長期不利的影響。我們的研究提供奈米銀導致的毒性機轉,且可對奈米銀使用上的安全管理策略之建立提供學理根基。
The growing applications of silver nanoparticles (AgNPs) in various aspects of daily life, such as healthcare and industrial sectors, have raised potential safety and health concerns. Recent evidence has shown that AgNPs induce a variety of cytotoxic pathways. However, the molecular and cellular mechanisms by which AgNPs exert toxicity, particularly in vivo, remain elusive. Here, we used Drosophila as a model system to study mechanisms of AgNPs-induced cellular damages in vivo. We demonstrated that dietary exposure at the larval stage increased larval/pupal lethality, and decreased successful eclosion rates. Mechanically, AgNPs strongly induced reactive oxygen species (ROS) and dose-dependently activated the Nrf2 antioxidant signaling pathway. Moreover, AgNPs dramatically led to activation of autophagy, DNA damage and apoptosis at the larval stage. Furthermore, larval exposure to AgNPs dose-dependently decreased lifespan of adult flies. Interestingly, expression of superoxide dismutase and catalase, downstream target genes of Nrf2 signaling, was decreased in aged but not in young flies. Taken together, AgNPs exert a variety of ROS-mediated cytotoxic effects, and induce long-term adverse effects on health/longevity by decreasing antioxidant capability. Our findings provide insight into mechanisms of AgNPs-induced toxicity, and may provide the scientific foundation for establishing safety management strategies of AgNPs usage.
Ali, D. Oxidative stress-mediated apoptosis and genotoxicity induced by silver nanoparticles in freshwater snail Lymnea luteola L. Biol Trace Elem Res 162, 333-341. (2014)
Ahmadi, F., and Branch, S. Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak Vet J 32, 325-328. (2012)
Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., and Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4, 634-641. (2009)
Benford, D.J., Hanley, A.B., Bottrill, K., Oehlschlager, S., Balls, M., Branca, F., Castegnaro, J.J., Descotes, J., Hemminiki, K., Lindsay, D., et al. Biomarkers as predictive tools in toxicity testing. Altern Lab Anim 28, 119-131. (2000)
Chen, L.Q., Fang, L., Ling, J., Ding, C.Z., Kang, B., and Huang, C.Z. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28, 501-509. (2015)
Chen, X., and Schluesener, H.J. Nanosilver: a nanoproduct in medical application. Toxicology letters 176, 1-12. (2008)
Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., and Stauber, R.H. The nanoparticle biomolecule corona: lessons learned - challenge accepted? Chem Soc Rev 44, 6094-6121. (2015)
Dubey, P., Matai, I., Kumar, S.U., Sachdev, A., Bhushan, B., and Gopinath, P. Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Adv Colloid Interface Sci 221, 4-21. (2015)
Fullgrabe, J., Klionsky, D.J., and Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nature reviews Molecular cell biology 15, 65-74. (2014)
Finkel, T., and Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. (2000)
Huo, L., Chen, R., Zhao, L., Shi, X., Bai, R., Long, D., Chen, F., Zhao, Y., Chang, Y.Z., and Chen, C. Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307-315. (2015)
Holmstrom, K.M., and Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15, 411-421. (2014)
Haase, A., Rott, S., Mantion, A., Graf, P., Plendl, J., Thunemann, A.F., Meier, W.P., Taubert, A., Luch, A., and Reiser, G. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126, 457-468. (2012)
Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300. (1956)
Kraft, C., Peter, M., and Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nature cell biology 12, 836-841. (2010)
Kwon, H.B., Lee, J.H., Lee, S.H., Lee, A.Y., Choi, J.S., and Ahn, Y.S. A case of argyria following colloidal silver ingestion. Ann Dermatol 21, 308-310. (2009)
Lee, Y.H., Cheng, F.Y., Chiu, H.W., Tsai, J.C., Fang, C.Y., Chen, C.W., and Wang, Y.J. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35, 4706-4715. (2014)
Loeschner, K., Hadrup, N., Qvortrup, K., Larsen, A., Gao, X., Vogel, U., Mortensen, A., Lam, H.R., and Larsen, E.H. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8, 18. (2011)
Lee, S.J., Hwang, A.B., and Kenyon, C. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20, 2131-2136. (2010)
Maiese, K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2, 185-187. (2016)
Mao, B.H., Tsai, J.C., Chen, C.W., Yan, S.J., and Wang, Y.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology, 1-20. (2016)
Mirisola, M.G., and Longo, V.D. A radical signal activates the epigenetic regulation of longevity. Cell Metab 17, 812-813. (2013)
Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909-1911. (2005)
Xu, Y., Wang, L., Bai, R., Zhang, T., and Chen, C. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7, 16100-16109. (2015)
Yokota, S., Himeno, M., Roth, J., Brada, D., and Kato, K. Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)phthalate treatment. II. Immunocytochemical analysis of early and late autophagosomes. European journal of cell biology 62, 372-383. (1993)