簡易檢索 / 詳目顯示

研究生: 楊宗銘
Yang, Tsung-Ming
論文名稱: 混相鐵酸鉍的介電色散
Dielectric dispersion in mixed-phase BiFeO3
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 119
中文關鍵詞: 混相鐵酸鉍介電色散類弛豫體單斜晶
外文關鍵詞: Mixed-phase BiFeO3, dielectric dispersion, relaxor-like, monoclinic
相關次數: 點閱:94下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中探討混相鐵酸鉍的介電色散行為。同時具有長方晶與菱長晶的鐵電材料─混相鐵酸鉍,與弛豫體─鈮鎂酸鉛((1-x)PbMg1/3Nb2/3O3 - xPbTiO3 (PMN - PT))有以下類似性質;(1)具有單斜晶的型態相邊界(Morphotropic phase boundary, MPB)構造,(2)量測介電對溫度的頻譜(ε´-T)時,呈現了頻率色散現象,(3)具奈米尺度的電域結構,顯示了類弛豫體(relaxor-like)的現象。本研究中發現ε´-T介電譜是由介電色散與相變2個部分所貢獻。其中,混相鐵酸鉍的介電色散是由於介電弛豫機制所造成的,相變則與發生在150℃附近的單斜晶(monoclinic)M_C⟶M_A轉變有關。
    利用介電頻譜術,可以將混相鐵酸鉍大致歸納出,由低頻導電弛豫、中頻介電弛豫、高頻弛豫3個不同機制所組成的,推測機制分別由漏電流、偶極的極化轉向以及微區的相界效應所貢獻。並藉由等效電路模型的分析方式,得到內部的弛豫時間以及位能分布,算出介電、導電弛豫的活化能為0.11 eV、0.23 eV,認為較小活化能是造成介電色散的原因。
    基於微觀下的導電量測,了解到混相鐵酸鉍導電行為與不同相間的相邊界有關聯,並利用改變歷史偏壓的方式翻轉內部極化,達到不同的導電操控。

    In this study, the dielectric dispersion of mixed-phase BiFeO3 is investigated. Mixed-phase BiFeO3, which has tetragonal (T) and rhombohedral (R) phases, is similar to the relaxor system, such as (1-x)PbMg1/3Nb2/3O3 - xPbTiO3 (PMN - PT) in several aspects: (1) They both possess monoclinic phases of the morphotropic phase boundary (MPB). (2) Their dielectric constant-temperature dependence (ε´-T) show the frequency dispersion behaviors. (3) They both consist of nanodomain structures. Therefore, mixed–phase BiFeO3 exhibits the relaxor-like behavior. In this study, we observed ε´-T spectrum include the dielectric dispersion and phase transition parts. The former is contributed to dielectric relaxation, and the latter is associated with monoclinic phase transformation from M_C to M_A.
    We also discovered three main mechanisms in dielectric spectrum. There are low frequency conductive relaxation, middle frequency dielectric relaxation, and high frequency relaxation. They come from leakage current, dipolar reorientation polarization, and interfaces of micro-regions, respectively. Further, we use equivalent lumped circuit to analyze the relaxation time and the distribution of potential energy. Calculation results indicated 0.11 eV and 0.23 eV for activation energy of dielectric relaxation and conductive relaxation, respectively, and we inferred the dielectric dispersion is due to the small activation energy.
    Based on the nano-scale conductive mapping, we can conclude the conductive phenomenon comes from the phase boundaries of mixed-phase. The conductive state can be controllable by switching polarization with applying DC bias.

    總目錄 摘要 I Abstract II 致謝 IV 總目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料基礎理論 3 2.2 混相鐵酸鉍薄膜之研究現況 6 2.2.1 鐵酸鉍 6 2.2.2 混相鐵酸鉍 8 2.3 弛豫體(relaxor) 16 2.3.1 弛豫體與鐵電體的比較 16 2.3.2 弛豫體的相轉換及材料介紹 19 2.3.3 極化微區(Polar nano regions, PNRs)實驗的證據 25 2.3.4 弛豫體的微觀機制及理論 27 2.4 介電理論 31 2.4.1 極化機制 32 2.4.2 動態域壁理論 34 2.4.3 電路模型解析介電譜 41 第三章 實驗原理與方法 50 3.1 阻抗分析儀原理與架構 51 3.2 掃描式探針顯微鏡 55 3.2.1 掃描式探針顯微鏡的原理與架構 55 3.2.2 壓電力顯微術(PFM) 58 3.2.3 導電式顯微鏡(CAFM) 60 3.3 樣品資訊 62 3.4 實驗步驟 63 第四章 實驗結果與討論 65 4.1 介電頻譜分析和電路模型模擬 66 4.2 混相鐵酸鉍在不同溫度下的介電頻譜 76 4.2.1 混相鐵酸鉍介電與導電機制的活化能與弛豫時間 76 4.2.2 混相鐵酸鉍的介電色散與相變 85 4.3 混相鐵酸鉍的導電機制 98 4.3.1 混相鐵酸鉍微觀導電探討 98 4.3.2 混相鐵酸鉍在極化翻轉下導電性質影響 101 第五章 結論 113 參考資料 115

    1 李欣樺, 應變誘發的形態相邊界上之電域結構. NCKU:Tainan, Taiwan.(2011).
    2 Kenji Uchino, Ferroelectric Devices. Materials Engineering.(2000).
    3 F. Kubel; H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science , 46, 698.(1990).
    4 F. Zavaliche, P. Shafer, R. Ramesh et al., Polarization switching in epitaxial BiFeO3 films. Appl Phys Lett 87 (25).(2005).
    5 S. K. Streiffer, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J Appl Phys 83, 2742.(1998).
    6 L.W. Martin J. Seidel, Conduction at domain walls in oxide multiferroics. Nat Mater 8, 229.(2009).
    7 C. H. Yang, J. Seidel, S. Y. Kim et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8 (6), 485.(2009).
    8 J. Seidel, P. Maksymovych, Y. Batra et al., Domain Wall Conductivity in La-Doped BiFeO3. Phys Rev Lett 105 (19).(2010).
    9 朱逢男, 鐵酸鉍薄膜在電場下的相調控. NCKU:Tainan, Taiwan.(2011).
    10 R. J. Zeches, M. D. Rossell, J. X. Zhang et al., A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science 326 (5955), 977.(2009).
    11 H. M. Christen, J. H. Nam, H. S. Kim et al., Stress-induced R-M-A-M-C-T symmetry changes in BiFeO3 films. Phys Rev B 83 (14).(2011).
    12 Z. H. Chen, Z. L. Luo, C. W. Huang et al., Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films. Adv Funct Mater 21 (1), 133.(2011).
    13 A. R. Damodaran, C. W. Liang, Q. He et al., Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films. Adv Mater 23 (28), 3170.(2011).
    14 A. R. Damodaran, S. Lee, J. Karthik et al., Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys Rev B 85 (2).(2012).
    15 H. J. Liu, C. W. Liang, W. I. Liang et al., Strain-driven phase boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction. Phys Rev B 85 (1).(2012).
    16 L. E. Cross, Relaxor Ferroelectrics. Ferroelectrics 76 (3-4), 241.(1987).
    17 李克慶 李廣申, 鉛基複合鈣鈦礦型弛豫鐵電體介電理論研究進展. 中國陶瓷工業 11, 3.(2004).
    18 G. A. Samara, The relaxational properties of compositionally disordered ABO(3) perovskites. J Phys-Condens Mat 15 (9), R367.(2003).
    19 A. A. Bokov and Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41 (1), 31.(2006).
    20 Andrei kholkin, Nano scale imaging and polarization dynamics in relaxor ferroelectrics. Department of ceramics and glass engerneering and center of research in ceramic amd composite materials, university of Aveior(Portugal ).(2008).
    21 J. Wingbermuhle, M. Meyer, O. F. Schirmer et al., Electron paramagnetic resonance of Ce3+ in strontium-barium niobate. J Phys-Condens Mat 12 (18), 4277.(2000).
    22 M. P. Trubelja, E. Ryba, and D. K. Smith, A study of positional disorder in strontium barium niobate. J Mater Sci 31 (6), 1435.(1996).
    23 T. Lukasiewicz, M. A. Swirkowicz, J. Dec et al., Strontium-barium niobate single crystals, growth and ferroelectric properties. J Cryst Growth 310 (7-9), 1464.(2008).
    24 V. V. Shvartsman, W. Kleemann, T. Lukasiewicz et al., Nanopolar structure in Sr(x)Ba(1-x)Nb(2)O(6) single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys Rev B 77 (5).(2008).
    25 J. Wang, Y. M. Jia, R. K. Zheng et al., dc bias-induced dielectric anomalies in < 111 >-oriented 0.9Pb(Mg1/3Nb2/3O3)-0.1PbTiO(3) single crystals. Appl Phys Lett 88 (11).(2006).
    26 V. V. Shvartsman and A. L. Kholkin, Evolution of nanodomains in 0.9PbMg(1/3)Nb(2/3)O(3)-0.1PbTiO(3) single crystals. J Appl Phys 101 (6).(2007).
    27 V. V. Shvartsman and A. L. Kholkin, Domain structure of 0.8Pb(Mg1/3Nb2/3)O-3-0.2PbTiO(3) studied by piezoresponse force microscopy. Phys Rev B 69 (1).(2004).
    28 Z. G. Ye, B. Noheda, M. Dong et al., Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O-3-PbTiO3 system. Phys Rev B 64 (18).(2001).
    29 I. K. Bdikin, V. V. Shvartsman, and A. L. Kholkin, Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O-3-4.5%PbTIO3 single crystals. Appl Phys Lett 83 (20), 4232.(2003).
    30 G. Y. Xu, G. Shirane, J. R. D. Copley et al., Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O-3. Phys Rev B 69 (6).(2004).
    31 Arthur von Hippel, Dielectrics and Waves. Boston. London.(1995).
    32 M. Barsoum, Fundamentals of Ceramics. McGraw Hill, New York.(1994).
    33 W. Kleemann, Universal domain wall dynamics in disordered ferroic materials. Annu Rev Mater Res 37, 415.(2007).
    34 S. M. Yang, J. Y. Jo, T. H. Kim et al., ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys Rev B 82 (17).(2010).
    35 方俊鑫 、 殷之文, 電介質物理學 (第二版). 科學出版社.(2000).
    36 J.Rss Macdonald Evgenij Barsoukov, Impedance Spectroscopy Theory, Experiment, and Applications. Wiley-Interscience second edition.(2005).
    37 T. Braun, W. Kleemann, J. Dec et al., Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4. Phys Rev Lett 94 (11).(2005).
    38 X. Chen, O. Sichelschmidt, W. Kleemann et al., Domain wall relaxation, creep, sliding, and switching in superferromagnetic discontinuous Co80Fe20/Al2O3 multilayers. Phys Rev Lett 89 (13).(2002).
    39 K. S. Cole and R. H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9 (4), 341.(1941).
    40 ZHONG Weilie ZHANG P e i l i n , SHEN Chenghang, LIU Sidong, DIELECTRIC RESPONSE OF A SEMICONDUCTING CERAMIC BASED ON BARIUM TITANATE. CHINESE PHYS. LETT 4 (No.4).(1987).
    41 D. C.West Sinclair, A. R., Impedance and Modulus Spectroscopy of Semiconducting Batio3 Showing Positive Temperature-Coefficient of Resistance. J Appl Phys 66 (8), 3850.(1989).
    42 J. J. Liu, C. G. Duan, W. G. Yin et al., Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys Rev B 70 (14).(2004).
    43 Agilent, Agilent Technologies Impedance Measurement Handbook.(2003).
    44 陳至瑋, 混合相鐵酸鉍薄膜的介電機制轉換研究. NCKU:Tainan, Taiwan.(2010).
    45 方政幃, 鐵酸鉍薄膜的電場切換導電態之研究. NCKU:Tainan, Taiwan.(2011).
    46 J. Lu, A. Gunther, F. Schrettle et al., On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties. Eur Phys J B 75 (4), 451.(2010).
    47 I. P. Raevski, S. A. Prosandeev, A. S. Bogatin et al., High dielectric permittivity in AFe(1/2)B(1/2)O(3) nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb). J Appl Phys 93 (7), 4130.(2003).
    48 F. Z. Huang, X. M. Lu, W. W. Lin et al., Multiferroic properties and dielectric relaxation of BiFeO3/Bi3.25La0.75Ti3O12 double-layered thin films. Appl Phys Lett 90 (25).(2007).
    49 S. Kamba, D. Nuzhnyy, M. Savinov et al., Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics. Phys Rev B 75 (2).(2007).
    50 C. C. Homes, T. Vogt, S. M. Shapiro et al., Optical response of high-dielectric-constant perovskite-related oxide. Science 293 (5530), 673.(2001).
    51 E. Markiewicz, Dielectric properties of BiFeO3 ceramics obtained from mechanochemically synthesized nanopowders. Journal of Electroceram 27, 154.(2011).
    52 A. Peláiz-Barranco and J. D. S. Guerra, Dielectric Relaxation Phenomenon in Ferroelectric Perovskite-related Structures. Ferroelectrics.(2010).
    53 D. Viehland, S. J. Jang, L. E. Cross et al., Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors. J Appl Phys 68 (6), 2916.(1990).

    下載圖示 校內:2014-08-14公開
    校外:2014-08-14公開
    QR CODE