簡易檢索 / 詳目顯示

研究生: 賴育成
Lai, Yu-Chen
論文名稱: 分子間作用力對團聯共聚物混摻物之微觀和巨觀相分離與結晶行為之影響
Effect of Intermolecular Interaction on the Micro- and Macro-phase Separation and Crystallization Behavior of Block Copolymer Blends
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 團聯共聚物混摻微觀相分離巨觀相分離結晶行為氫鍵
外文關鍵詞: block copolymer, blend, microphase separation, macrophase separation, crystallization behavior, hydrogen bond
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討poly(styrene-block-ethylene oxide (PS-b-PEO)和poly(styrene-block-acrylic acid) (PS-b-PAA)之雙成份混摻物的相行為與結晶行為。利用random phase approximation理論計算出團聯共聚物不同鏈段間的χ值。我們將PS-b-PEO與PS-b-PAA混摻系統視為PS-b-PEO、PS-b-PAA和PEO/PAA三個部分之間作用力的整合,並分析其相行為。在低溫環境時,PS-b-PEO/PS-b-PAA混摻物中之PS相容,而PEO和PAA相容,因此可形成微相分離結構;而在升溫過程中,由於氫鍵消失,系統趨於不相容,當溫度超過135 oC後,系統巨觀相分離,形成PS-b-PEO rich phase和PS-b-PAA rich phase 兩相,其中分離強度不足的PS-b-PEO rich phase,在升溫過程處於disorder狀態;相反的,有較大分離強度的PS-b-PAA rich phase,在升溫過程中則出現有序無序相轉換現象。另一方面,我們將對稱型PS-b-PEO與對稱型PS-b-PAA以不同比例混摻,在PS相的hard confinement下,PEO結晶之方向性會受到PEO鏈段之結晶摺疊長度與PEO微域尺寸影響,若PEO結晶摺疊長度大於PEO微域的尺寸,結晶c ̂軸之方向垂直於PS/PEO的界面之法向量,以符合PS相的空間限制;相反的,若PEO結晶摺疊長度小於PEO微域的尺寸,結晶c ̂軸之方向可平行於PS/PEO的界面之法向量。此外,PEO結晶受到 PAA鏈段氫鍵作用力影響,使得混摻系統之結晶度降低,方向性變差。

    This study aims at understanding the phase and crystallization behaviors of binary block copolymer blends composed of poly(styrene-block-ethylene oxide) (PS-b-PEO) and poly(styrene-block-acrylic acid) (PS-b-PAA). The random phase approximation theory was used to calculate the χ values between the different segments of the block copolymers. The phase behavior of the PS-b-PEO/PS-b-PAA blends was considered to be affected by various contributions, including the interaction between PS and PEO in PS-b-PEO, the interaction between PS and PAA in PS-b-PAA, and the interaction between PEO and PAA. At low temperatures, the PS-b-PEO/PS-b-PAA blend underwent microphase separation because of the two identical PS blocks and the favorable compatibility between PEO and PAA blocks. At elevated temperatures, the system tended to be more incompatible because of the disappearance of hydrogen bonds between PEO and PAA. When the temperature exceeded 135 °C, the system macrophase separated into two phases: PS-b-PEO rich phase and PS-b-PAA rich phase. During the heating process, the PS-b-PEO rich phase with weak segregation strength was at a disorder state. By contrast, the PS-b-PAA rich phase with strong segregation strength underwent an order-to-disorder phase transition. Furthermore, we prepared symmetric PS-b-PEO/symmetric PS-b-PAA blends with different compositions, and investigated the orientation of PEO crystals within the hard confinement between the PS microdomains. The crystal orientation was strongly depended on the lamellar thickness of PEO crystals and the PEO microdomain size. When the lamellar thickness of PEO was larger than the PEO microdomain size, the direction of the c ̂ axis of crystals was perpendicular to the PS/PEO interface normal to satisfy the spatial restriction of the PS phase. By contrast, when the lamellar thickness of PEO was smaller than the PEO microdomain size, the direction of the crystal c ̂ axis was parallel to the PS/PEO interface normal. In addition, the crystallization behavior of PEO was affected by the hydrogen bonding between PAA and PEO. The hydrogen bonds reduced the crystallinity and disturbed the crystal orientation of the blends.

    摘要 I Extend abstract II 致謝 XIX 目錄 XX 表目錄 XXII 圖目錄 XXIV 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 第2章 文獻回顧 3 2.1 高分子混摻 (polymer blend) 3 2.1.1 相圖 4 2.2 共聚物 (copolymer) 8 2.2.1 雙團聯共聚物之自組裝 ( Self-Assembly ) 9 2.3 團聯共聚物和其混摻物的微相結構 12 2.3.1 團聯共聚物均聚物混摻 14 2.3.2 團聯共聚物/團聯共聚物混摻 18 2.4 有序無序轉換 (order-disorder transition, ODT ) 21 2.5 分子間的交互作用 25 2.5.1 高分子混摻之氫鍵作用力 26 2.6 團聯共聚物的結晶行為 31 第3章 究方法 33 3.1 藥品 33 3.2 分析儀器 34 3.3 樣品製備 35 3.3.1 混摻物的相行為 35 3.3.2 結晶方向性混摻物 37 第4章 結果與討論 40 4.1 團聯共聚物混摻團聯共聚物 40 4.1.1 PEO (2000 g/mol)與PAA (1800 g/mol)混摻物之相容性 41 4.1.2 PS (2200 g/mol)與PEO (2000 g/mol)混摻物之相容性 51 4.1.3 PS-b-PEO (5200-b-5500 g/mol)之鏈段相容性及相行為 54 4.1.4 PS-b-PAA (5200-b-4800 g/mol)之鏈段相容性及相行為 57 4.1.5 PS-b-PEO (5200-b-5500 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統之相行為 59 4.2 PS-b-PEO (5200-b-5500 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統之相行為與有序無序相轉換 64 4.3 PS-b-PEO (21500-b-20000 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統之相行為 76 4.4 對稱型雙團聯共聚物混摻物之結晶方向性 79 4.4.1 PS-b-PEO (10000-b-11500 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統結晶方向性 82 4.4.2 PS-b-PEO (21500-b-20000 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統結晶方向性 92 4.4.3 PS-b-PEO (5200-b-5500 g/mol)與PS-b-PAA (5200-b-4800 g/mol)混摻系統結晶方向性 100 第5章 結論 107 第6章 參考資料 108

    [1] Hashimoto, T.; Ogawa, T.; Han, C. D. Determination of Sharpness of Order-Disorder Transition of Block Copolymers by Scattering Methods. Journal of the Physical Society of Japan, 63 (6), 2206-2214, 1994.
    [2] Ahn, H.; Lee, Y.; Lee, H.; Park, S.; Kim, Y.; Cho, J.; Ryu, D. Y. Microdomain expansion and transition behavior of PS-b-PMMA/PS homopolymers by SAXS analysis. Polymer, 53 (22), 5163-5169, 2012.
    [3] Lee, W.; Chen, H. L.; Lin, T. L. Correlation between crystallization kinetics and microdomain morphology in block copolymer blends exhibiting confined crystallization. Journal of Polymer Science Part B: Polymer Physics, 40 (6), 519-529, 2002.
    [4] Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a Self-Assembled Crystalline−Amorphous Diblock Copolymer. Journal of the American Chemical Society, 122 (25), 5957-5967, 2000.
    [5] Barlow, J. W.; Paul, D. R. Mechanical compatibilization of immiscible blends. Polymer Engineering & Science, 24 (8), 525-534, 1984.
    [6] Horák, Z.; Fortelný, I.; Kolařík, J.; Hlavatá, D.; Sikora, A. Polymer blends. Encyclopedia of Polymer Science and Technology, 2002.
    [7] Anderson, B. D. Predicting Solubility/Miscibility in Amorphous Dispersions: It Is Time to Move Beyond Regular Solution Theories. Journal of Pharmaceutical Sciences, 107 (1), 24-33, 2018.
    [8] Manias, E.; Utracki, L. A., Thermodynamics of Polymer Blends. In Polymer Blends Handbook, Utracki, L. A., Wilkie, C. A., Eds. Springer Netherlands: Dordrecht, 2014; pp 171-289.
    [9] Zhu, J.; Lu, X.; Balieu, R.; Kringos, N. Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method. Materials & Design, 107, 322-332, 2016.
    [10] Ougizawa, T.; Inoue, T., Morphology of Polymer Blends. In Polymer Blends Handbook, Utracki, L. A., Wilkie, C. A., Eds. Springer Netherlands: Dordrecht, 2014; pp 875-918.
    [11] Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules, 29 (4), 1091-1098, 1996.
    [12] Helfand, E. Block copolymer theory. III. Statistical mechanics of the microdomain structure. Macromolecules, 8 (4), 552-556, 1975.
    [13] Leibler, L. Theory of Microphase Separation in Block Copolymers. Macromolecules, 13 (6), 1602-1617, 1980.
    [14] Bates, F. S.; Fredrickson, G. Block copolymers-designer soft materials. Physics Today, 52, 2000.
    [15] Flory, P. J. Thermodynamics of High Polymer Solutions. The Journal of Chemical Physics, 10 (1), 51-61, 1942.
    [16] Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 41 (1), 525-557, 1990.
    [17] Bates, F. S. Polymer-polymer phase behavior. Science, 251 (4996), 898-905, 1991.
    [18] Guarini, K. W.; Black, C. T.; Yeung, S. H. Optimization of diblock copolymer thin film self assembly. Advanced Materials, 14 (18), 1290-1294, 2002.
    [19] Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chemical Society Reviews, 41 (18), 5969-85, 2012.
    [20] Hu, H.; Gopinadhan, M.; Osuji, C. O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter, 10 (22), 3867-3889, 2014.
    [21] Court, F.; Hashimoto, T. Morphological studies of binary mixtures of block copolymers. 1. Cosurfactant effects and composition dependence of morphology. Macromolecules, 34 (8), 2536-2545, 2001.
    [22] 林柄良. 剪切流場下對嵌段共聚物微觀相配向的影響. 2009.
    [23] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules, 24 (1), 240-251, 1991.
    [24] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules, 23 (20), 4378-4386, 1990.
    [25] Luo, C.; Han, X.; Gao, Y.; Liu, H.; Hu, Y. Crystallization behavior of “wet brush” and “dry brush” blends of PS‐b‐PEO‐b‐PS/h‐PEO. Journal of Applied Polymer Science, 113 (2), 907-915, 2009.
    [26] Yamaguchi, D.; Hashimoto, T. A Phase Diagram for the Binary Blends of Nearly Symmetric Diblock Copolymers. 1. Parameter Space of Molecular Weight Ratio and Blend Composition. Macromolecules, 34 (18), 6495-6505, 2001.
    [27] Yamaguchi, D.; Hasegawa, H.; Hashimoto, T. A phase diagram for the binary blends of nearly symmetric diblock copolymers. 2. Parameter space of temperature and blend composition. Macromolecules, 34 (18), 6506-6518, 2001.
    [28] Hashimoto, T.; Yamasaki, K.; Koizumi, S.; Hasegawa, H. Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers. Macromolecules, 26 (11), 2895-2904, 1993.
    [29] Han, C. D.; Baek, D. M.; Sakurai, S.; Hashimoto, T. Determination of the Order—Disorder Transition Temperature of a Styrene—Isoprene—Styrene Triblock Copolymer Using Dynamic Viscoelastic Measurements and Small-Angle X-Ray Scattering Technique. Polymer Journal, 21 (10), 841-846, 1989.
    [30] Park, S. B.; Ha, J. G.; Hahn, S. K.; Zin, W. C. Temperature-Dependent Location of a Weakly Segregated Block Copolymer in Binary Blends of Block Copolymers. Journal of Polymer Science. Pt. B-Polym. Phys., 52 (6), 470-476, 2014.
    [31] Yamaguchi, D.; Bodycomb, J.; Koizumi, S.; Hashimoto, T. Ordered Structure in Blends of Block Copolymers. 4. Location of the Short Diblock. Macromolecules, 32 (18), 5884-5894, 1999.
    [32] Coleman, M. M.; Painter, P. C.; Graf, J. F., Specific interactions and the miscibility of polymer blends. CRC Press: 1995.
    [33] Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Progress in Polymer Science, 20 (1), 1-59, 1995.
    [34] Jo, W. H.; Lee, S. C. Miscibility of poly (ethylene oxide) and poly (styrene-co-acrylic acid) blends. Macromolecules, 23 (8), 2261-2265, 1990.
    [35] Nishi, T.; Wang, T. Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules, 8 (6), 909-915, 1975.
    [36] Lee, J. Y.; Painter, P. C.; Coleman, M. M. Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups. Macromolecules, 21 (2), 346-354, 1988.
    [37] Nakagawa, S.; Marubayashi, H.; Nojima, S. Crystallization of polymer chains confined in nanodomains. European Polymer Journal, 70, 262-275, 2015.
    [38] Hammouda, B. Random phase approximation for compressible polymer blends. Journal of Non-Crystalline Solids, 172-174, 927-931, 1994.
    [39] Lo, C.-T.; Seifert, S.; Thiyagarajan, P.; Narasimhan, B. Phase behavior of semicrystalline polymer blends. Polymer, 45 (11), 3671-3679, 2004.
    [40] Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer. Polymer, 42 (13), 5829-5839, 2001.
    [41] Dudowicz, J.; Freed, K. F. Relation of effective interaction parameters for binary blends and diblock copolymers: lattice cluster theory predictions and comparisons with experiment. Macromolecules, 26 (1), 213-220, 1993.
    [42] Ten Brinke, G.; Karasz, F. E.; MacKnight, W. J. Phase behavior in copolymer blends: poly(2,6-dimethyl-1,4-phenylene oxide) and halogen-substituted styrene copolymers. Macromolecules, 16 (12), 1827-1832, 1983.
    [43] Frielinghaus, H.; Hermsdorf, N.; Almdal, K.; Mortensen, K.; Messé, L.; Corvazier, L.; Fairclough, J. P. A.; Ryan, A. J.; Olmsted, P. D.; Hamley, I. W. Micro- vs. macro-phase separation in binary blends of poly(styrene)-poly(isoprene) and poly(isoprene)-poly(ethylene oxide) diblock copolymers. Europhysics Letters (EPL), 53 (5), 680-686, 2001.
    [44] 廖書玉. 分子間作用力對團聯共聚物混摻物相轉換及結晶行為的影響. 國立成功大學, 2019.
    [45] Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Liu, L.; Lotz, B. Initial-Stage Growth Controlled Crystal Orientations in Nanoconfined Lamellae of a Self-Assembled Crystalline−Amorphous Diblock Copolymer. Macromolecules, 34 (5), 1244-1251, 2001.
    [46] Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Strain-Induced Molecular Ordering in Polylactide upon Uniaxial Stretching. Macromolecules, 43 (3), 1488-1498, 2010.
    [47] Lisowski, M. S.; Liu, Q.; Cho, J.; Runt, J.; Yeh, F.; Hsiao, B. S. Crystallization Behavior of Poly(ethylene oxide) and Its Blends Using Time-Resolved Wide- and Small-Angle X-ray Scattering. Macromolecules, 33 (13), 4842-4849, 2000.
    [48] Luo, H.; Huang, Y.; Wang, D.; Shi, J. Coaxial-electrospinning as a new method to study confined crystallization of polymer. Journal of Polymer Science Part B: Polymer Physics, 51 (5), 376-383, 2013.
    [49] Cheng, S. Z. D.; Chen, J.; Barley, J. S.; Zhang, A.; Habenschuss, A.; Zschack, P. R. Isothermal thickening and thinning processes in low molecular-weight poly(ethylene oxide) fractions crystallized from the melt. 3. Molecular weight dependence. Macromolecules, 25 (5), 1453-1460, 1992.

    無法下載圖示 校內:2026-08-18公開
    校外:2026-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE