| 研究生: |
李軒圃 Li, Xuan-Pu |
|---|---|
| 論文名稱: |
光纖多工感測系統研發與生化電解質濃度監測 Development of Fiber-Optic Based Multi-functional Sensors for Biochemical Electrolyte Monitoring |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 溶膠凝膠法 、浸漬覆膜法 、漸衰波理論 、Lambert-Beer原理 、Maxwell理論 |
| 外文關鍵詞: | sol-gel method, evanescent wave theory, Maxwell theory, dip-coating method, Lambert-Beer theory |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人體內目前已知可以被定量檢測出來的電解質約有六十多種,但是在體液臨床生化檢驗過程中,最常被用來作為體液檢測以診斷疾病的電解質,大體上只有鈉,鉀,鈣,氯,鎂,鋅,鐵等數種元素。上述這些電解質的濃度與人體內分泌,肝臟及腎臟等疾病,有非常密切的關係,故常被醫學界用作判斷病情的依據。人體內的電解質濃度很少失衡,當電解質濃度發生異常時,病人極可能已罹患內分泌或肝腎相關之重大疾病,必須立刻住院檢測並加以治療。目前臨床生化電解質常用的定量檢測方法中有火燄比色法,離子選擇電極法與離子層析法。火燄比色法通常需要使用丙烷或天然氣與壓縮之空氣作為燃料,然而火燄穩定性是相當難以控制的。離子層析法及離子選擇電極法雖然可以同時對兩種電解質作檢測,但是當其溶液中之水的含量降低,離子的活性將受到改變而影響了電極的量測電位。上述這些傳統生化電解質定量檢測方法都不盡理想。因此本文擬研發一套以光纖為主,穩健且可以同時量測多種電解質濃度的臨床用系統,以提昇生化電解質濃度多工量測監控穩定度,解析度,及量測速度。
目前市面上一般的光纖式感測系統大多以單工量測為主,因此本文開發了溶膠凝膠法與浸漬覆膜法等技術,藉由特定敏感元素所組成的感測膜元件加以串聯,以達成易拆裝多工感測的目標。為了技術的拓展與傳承,本文更進一步將此光纖生化多工感測過程,配合漸衰波理論,Beer-Lambert原理及Maxwell理論,推導建立一套完整可行的理論及實踐步驟,並透過實作結果,調整參數以作為今後發展各式光纖生化感測器之理論依據。
本文所建立的理論模型與光纖生化多工感測系統,成果包括:(1)建立光纖式多工理論模型預估樣本之離子濃度,(2)光纖式多工實測系統可以鑑定樣本中離子種類並檢測其濃度,(3)將光纖式多工實測系統應用於尿液檢測,使領域擴展至醫學與生化方面,(4)本文所發展的感測槽可以同時對多種離子進行檢測,(5)溶膠凝膠法與浸漬覆膜法製作方便且成本低廉,可推廣應用於樣本中不同成份的量測。
There have been more than sixty different types of electrolytes that can be quantitatively determined and analyzed from the body fluids of human beings so far. However, only several kinds of these electrolytes are often used for diseases diagnosis. These include sodium, potassium, calcium, chlorine, magnesium, zinc, iron, etc. The types and concentrations of these electrolytes obtained from body fluids of human patients are essentially used to compared and to diagnose diseases of endocrinopathy, liver complaint, nephropathy, and so forth. The concentrations of electrolytes in body fluids seldom encounter unbalanced. When concentrations of electrolytes are abnormal, it may result in from ill-balanced feeding or anorexia. Very possibly, the human body has suffered from serious illness, or may be in danger. The patient has to be hospitalized immediately.
The traditionally-used quantitative analysis methods for clinical biochemistry inspection include the emission flame method, the ion selective electrode method, and the ion chromatographic determination method. The emission flame method employs propane or natural gas for heating, in which flame stability is a challenging problem. Although the ion selective electrode method and the ion chromatographic determination method can be simultaneously used to experiment with two electrolytes, the reduction in solutions may change the activity of ions and influence electric potential of electrode. Consequently the development of a fiber-optic based multi-functional sensors for biochemical electrolyte monitoring becomes desperately needed. The system proposed in this paper can enhance not only the stability and resolution but also the speed of measurement. Traditional optical fiber sensors for electrolyte monitoring can only be used on sensing a single or two different functional ion elements so far. However, by using both the sol-gel and the dip-coating techniques, the proposed system can be used to multi-functional sensors for simultaneous measurement of different types of electrolytes.
In order to develop the analytical model for the multifunctional fiber-optic sensors, the evanescent wave theory, Maxwell theory, and Lambert-Beer theory are used to figure out the types and the corresponding concentrations of various electrolytes. Once the parameters of the system, the environment, and the processes are input to the analytical model, the variation of light intensity before and after sensing layers can be obtained. Concentrations of multiple electrolytes can then be estimated by using the variation of light intensity. The relation between the concentrations and the variations of light intensity can be obtained to establish the sensitivity curve for electrolyte typing characterization.
The contributions of the fiber-optic based multi-function sensing system are narrated as follows:(a) a multi-functional optical-fiber modeling procedure is developed and used to estimate the composition and concentration of ions, (b) an experimental multi-functional optical-fiber sensing system is established and used to measure the compositions and concentration of ions for various samples, (c) the experimental multi-functional sensing system is used for urinous measuration and the application is extended for iatrology and bio-chemistry, (d) the sensing slot make the system to measure concentraion of several ions at the same time, (e) the sensing components prodeued by Sol-Gel and deep-coating methods reduce the cost and increase the convenience.
1.Shortreed, R.M., Dourado, S., Kopelman R., “Development of a Fluorescent Optical Pottassium-Selective Ion Sensor with Ratiometric Response for Intracellular Applications,” Sensors and Actuators, B 38-39, pp. 8-12, 1997.
2.Malcik, N., Tunoglu, N., Caglar, P., Wnek, G.E., “Fiber-optic Cation Determination Using Crown Ether Dyes Immobilized on Polymer Membranes,” Sensors and Actuators, B53, pp. 205-210, 1998.
3.Zhujun, Z., Seitz, W.R., “A Fluorescent Sensor for Aluminum(III), Magnesium(II), Zinc(II), and Cadmium(II) Based on Electrostatically Immobilized Quinolin-8-Ol Sulfonate,” Analytica Chimica Acta, 171, pp. 251-258, 1985.
4.Malcik, N., Caglar, P., “The Operational Parameters of a New Fibre- optic Sensor for Ferric Ions in Aqueous Media,” Sensors and Actuators, B38-39, pp. 386-389, 1997.
5.Saari, A.L., Seltz, W.R., “Immobilized Morin as Fluorescence Sensor for Determination of Aluminum(III),” Analytical Chemistry, 55, pp. 667-670, 1983.
6.Lakowicz, J.R., Principles of Fluorescence Spectroscopy, Plenum Press, 1983.
7.Garcia, R.P., Moreno, F.A., Diaz, M.E., “Serum Analysis for Potassium Ions Using a Fibre Optic Sensor,” Clinica Chimica Acta, 207, pp. 31-40, 1992.
8.Narayanaswamy, R., Fortunato, S., “Flow Cell Studies with Immobilised Reagents for the Development of an Optical Fibre Sulphide Sensor,” Analyst, 111, pp.1085-1088, 1986.
9.Suzuki, K., Ohzora, H., Tohda, K., Miyazaki, K., “Fibre-optic Potassium Ion Sensors Based on a Neutral Ionophore and a Novel Lipophilic Anionic Dye,” Analytica Chimica Acta, 237, pp. 155-164, 1990.
10.Zhujin, Z., Mullin, J.L., Seitz, W.R., “Optical Sensor for Sodium based on Ion-pair Extraction and Fluorescence,” Analytica Chimica Acta, 184, pp. 251-258, 1986.
11.Al-amir, S.M.S., Ashworth, D.C., Narayanaswamy, R., “Synthesis and Characterization of Some Chromogenic Crown Ethers as Potential Optical Sensors for Potassium Ions,” Talanta, Vol. 36, No. 6, pp. 645-650, 1989.
12.Hecht, H.G., “A Comparison of the Kubelka-Munk, Rozenberg, and Pitts-Giovanelli Methods of Analysis of Diffuse Reflectance for Several Model Systems,” Applied Spectroscopy, 37, pp. 348-354, 1983.
13.Olinger, J.M., Griffiths, P.R., “Quantitative Effects of an Absorbing Matrix on Near-Infrared Diffuse Reflectance Spectra,” Analytical Chemistry, 60, pp. 2427-2435, 1988.
14.Udd, E., Fiber Optic Sensors, John Wiley and Sons, Inc, 1991.
15.Suzuki, K., Tohda, K., Yasushi, T., Ohzora, H., Nishihama, S., “Fiber-optic Magnesium and Calcium Ion Sensor Based on a Natural Carboxylic Polyether Antibiotic,” Analytical Chemistry, 61, pp. 382-384, 1989.
16.Ashworth, D.C., Huang, H.P., Narayanaswamy, R., “An Optical Calcium Ion Sensor,” Analytica Chimica Acta, 213, pp. 251-257, 1988.
17.Flausto, A.M., Rosario, P.G., Marta, E.D.G., Alfredo, S.M., “A Comparative Study of Two Diffurent Approaches for Active Optical Sensing of Potassium with a Chromoionophore,” Sensors and Actuators, B11, pp. 413-419, 1993.
18.Wolfbeis, O. S., Fiber Optic Chemical Sensors and Biosensors, Vol. II, pp. 1-19, 1991.
19.Motomizu, S., Yoshida, K., Toei, K., “Indirect Spectrophotometric Determination of Potassium Ion in water Based on the Precipitation with Tetraphenylborate Ion and a Crown Ether Using Flow Injection,” Analytica Chimica Acta, 261, pp. 225-231, 1992.
20.Schaffar, P.H., Wolfbeis, O.S., “Effect of Langmuir-Biodgett Layer Composition on the Response of Ion-selective Optrodes for Potassium, Based on the Fluorimetric Measurement of Membrane Potential,” Analyst, Vol. 113, pp. 693-697, 1988.
21.He, H., Li, H., Mohr, G., Kovacs, B., Werner, T., Wolfbeis, O.S., “Novel Type of Ion-selective Fluorosensor Based on the Inner Filter Effect: an Optrode for Potassium,” Analytical Chemistry, 65, pp. 123-127, 1993.
22.Wolfbeis, O.S., Schaffar, B.P.H., “Optical Sensors: an Ion-selective Optrode for Potassium,” Analytica Chimica Acta, 198, pp. 1-12, 1987.
23.Murkovic, I., Wolfbeis, O.S., “Fluorescence-based Sensor Membrane for Mercury(II) Detection,” Sensors and Actuators, B38-39, pp.246-251, 1997.
24.Narayanaswamy, R., Russell, D.A., Sevilla, F., “Optical-fibre Sensing of Fluoride Ions in a Flow-stream,” Talanta, Vol. 35, No. 2, pp. 83-88, 1988.
25.Vishnoi, G., Goel, T.C., Pillai, P.K.C., “Spectrophotometric Studies of Chemical Species Using Tapered Core Multimode Optical Fiber,” Sensors and Actuator, B45, pp. 43-48, 1997.
26.Wang, E., Zhu, L., Ma, L., Patel, H., “Optical Sensor for Sodium, Potassium and Ammonium Ions Based on Lipophilic Fluorescein Anionic Dye and Neutral Carriers,” Analytica Chimica Acta, Vol. 357, pp. 85-90, 1997.
27.Kim, K., Minamitani, H., Hisamoto, H., Suzuki, K., Kang, S., “Active Optical Thin-film Waveguide Sensor for Ion Sensing,” Analytica Chimica Acta, Vol. 343, pp. 199-208, 1997.
28.Covington, A., K., Ion-Selective Electrode Metholodology, Vol. I, pp.94-95, 1979.
29.Covington, A., K., Ion-Selective Electrode Metholodology, Vol. II, pp.77-78, 1979.
30.Senior, J., M., Optical Fiber Communications Principles and Practice, 1985.
31.易瑩, ”光纖感測器市場分析,” 光電資訊, 19期, pp. 53-57, 1993.
32.何敏夫, “臨床生化學,” 合計圖書出版社, 1992.
33.張連壁,”光纖感測器”, 文笙出版社, 1995.
34.李敏達, “均衡溶液化學,” 大聖圖書出版社, 1973.