簡易檢索 / 詳目顯示

研究生: 賴彥宏
Lai, Yang-hong
論文名稱: 我國事業單位局部排氣裝置設置現況、有效性與能耗情形之分析
Analysis of current installation conditions, energy consumption and effectiveness of local exhaust ventilation systems used in industries in Taiwan
指導教授: 蔡朋枝
Tsai, Perng-jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 設置規範局部排氣裝置能量耗損設計及安裝驗收操作維護
外文關鍵詞: local exhaust ventilation systems, energy consumption, evaluating protocol, test, operation and maintenance, design and installation
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為防止勞工暴露有害物,工程控制一直被視為應優先採取之措施,其中又以局部排氣裝置最廣為業界所使用,唯目前事業單位之設置現況、有效性及能耗情形,則仍需進一步分析探討。本研究首先針對局部排氣裝置建立一評估規範準則,並藉此再針對不同事業單位進行局部排氣裝置設置現況進行分析。最後,再就其局部排氣裝置效能與能耗情形加以探討。所建立之規範準則,主要參考六種國外局部排氣裝置設置規範,其內容分為設計及安裝、驗收,及操作維護等三階段,再經專家座談確認可行性後,另分別訂定11、4和4大項,及17、9和7項細部評估內容,及個細項之評估基準。前述準則經對20家事業單位,(含某高科技工業園區之十家高科技產業,和某傳統工業區之十家傳統產業進行現場評估)。測試後,可發現有關設計及安裝階段規範準則項目之17細項中,其各單一細項有50%以上之事業單位符合要求者,傳統產業與高科技產業分別有4項與12項。驗收階段規範基準項目之9細項中,傳統產業與高科技產業分別有0項與8項。操作維護階段規範基準之7細項中,傳統產業與高科技產業分別有0項與5項。本研究另利用靜壓平衡法,針對所訪視十家高科技產業、與十家傳統產業之局部排氣性能與能量耗損情形加以分析。結果發現高科技廠之局部排氣裝置均可達其所需求捕集風速,唯其耗能狀態為理想設計狀態之3.73 ~ 4.30倍。傳統產業部分,可發現有60%工廠局部排氣裝置效能不足,但因其管路設計及排風機選擇不當,100%事業單位均呈現過度耗能情形,其能耗狀態為理想設計狀態之8.33 ~ 150倍。綜合上述,為使事業單位設置之局部排氣裝置能達有效性、及降低能耗之情形,事業單位可利用本研究所發展規範準則,就設計及安裝、驗收、與操作維護三階段分別管制之。

    Engineering control is a prior measure to prevent worker expose to hazardous substances. Among them the local exhaust ventilation system (LEV) is the one used widely by industries. But the current installation conditions, energy consumption, and effectiveness of local exhaust ventilation systems are needed for further analyzing. The objective of this study is establish an evaluating protocol for LEV, and used it to analyze current installation conditions of LEV in various industries. Besides, this study is aimed at discussing the energy consumption and effectiveness of LEV. After analyzing all collected reference information, the development of techniques and systems was mainly based on six currently available reference materials. The developed evaluating protocol can be divided into three stages, including design and installation, test, and operation and maintenance stages. For each of the designated stage, its content can be divided into three levels, including main items (11, 4, and 4, for the design and installation, test, and operation and maintenance stages respectively), sub-items (17, 9 and 7, respectively), and detailed guidelines for each of all sub-items (17, 9, and 7, respectively). The present study also assess 20 enterprises, including 10 high-tech industries in a technology park and 10 conventional industries in industrial park, by using the above developed protocol the results show that over 50% enterprises conforming each one of 17 detail contents of detailed guidelines in the design and installation stage are 4 and 12 for conventional industries and high-tech industries, respectively. There are 0 contents in conventional industries and 8 contents in high-tech industries for the 9 detail guidelines in the test stage. There are 0 contents in conventional industries and 5 contents in high-tech industries for 7 detail guidelines in operation and maintenance stage. This study analyzes the energy consumption and performance of LEV by the static pressure balance method. The results show that LEVs in high-tech industries are found with enough capture velocities, but the energy consumption ratio of the current state to the ideal state is 3.73- 4.30. There are 60% LEVs in conventional industries are found with insufficient performance. Because of the poor design in duct and unsuitable fan selection, all selected of enterprises are found with energy consumption ratios 8.33- 150. In conclusion, the enterprises can use the developed evaluating protocol to restrain the LEV in design and installation, test, and operation and maintenance stage for the propose of effectiveness of a LEV system and reducing the energy consumption.

    摘要 I Abstract II 表目錄 VI 圖目錄 VII 第一章 前言 8 1-1 研究背景 8 1-2 研究目的 10 第二章 文獻回顧 11 2-1 局部排氣裝置的重要性 11 2-2各單位局部排氣裝置規章標準 11 2-2-1 ANSI/AIHA Z9.2 12 2-2-2 HSG54 14 2-2-3 新加坡局部排氣裝置設計、操作與維護指引手冊 14 2-2-4 SEMI S2與SEMI S6 15 2-2-5 ACGIH的工業通風原理參考書籍 15 2-2-6 NFPA 318 16 2-2-7 OSHA法令相關規定 16 2-2-8 我國法令相關規定 17 2-2-9 日本法令相關規定 18 2-3局部排氣裝置有效性 18 2-3-1 流體可視化 18 2-3-2風速量測 19 2-4 局部排氣裝置能量耗損 20 第三章 材料與方法 24 3-1研究架構 24 3-2 資料收集 24 3-3 專家座談 25 3-4局部排氣裝置設置現況分析方法 25 3-5局部排氣裝置效能與能耗分析 25 3-5-2 使用儀器 27 3-5-3 捕集風速量測 27 3-5-4面風速量測 28 第四章 結果與討論 32 4-1局部排氣裝置之規範準則 32 4-2局部排氣裝置設置現況分析結果 35 4-2-1局部排氣裝置設計及安裝階段 35 4-2-2局部排氣裝置驗收階段 39 4-2-3局部排氣裝置操作維護階段 40 4-3局部排氣裝置效能與能耗分析結果 42 4-3-1高科技事業單位 42 4-3-2傳統事業單位 42 4-4 問題與解決方案 44 4-4-1設置現況之問題 44 4-4-2 降低能量耗損 47 參考文獻 59 附錄二 局部排氣裝置設計及安裝階段規範準則 66 附錄三 局部排氣裝置驗收階段規範準則 70 附錄四 局部排氣裝置操作維護階段規範準則 73 附錄五:捕集風速之建議範圍 76 附錄六:導管搬運風速建議範圍 77 附錄七:空氣清淨裝置使用之建議 78 附錄八:性能維護之參考時程與內容 82

    [1] Croteau G.A., Flanagan M.E., Camp J.E., and Seixas N.S., 2004; The Efficacy of Local Exhaust Ventilation for Controlling Dust Exposures During Concrete Surface Grinding. Ann. Occup. Hyg., 60: 509-518.
    [2] Croteau G.A., Flanagan M.E., Camp J.E., and Seixas N.S., 2002; The Effect of Local Exhaust Ventilation Controls on Dust Exposures During Concrete Cutting and Grinding Activities. AIHA Journal. 63:458-467.
    [3] Burgess W.A., Ellenbecker M.J., and Treitman R.D., 1986; Ventilation for Control of the Work Environment.
    [4] 行政院勞工委員會,2007;勞工安全衛生設施規則。
    [5] 行政院勞工委員會,2003;有機溶劑中毒預防規則。
    [6] 行政院勞工委員會,2002;鉛中毒預防規則。
    [7] 行政院勞工委員會,1998;四烷基鉛中毒預防規則。
    [8] 行政院勞工委員會,2003;粉塵危害預防標準。
    [9] 行政院勞工委員會,2001;特定化學物質危害預防標準。
    [10] 行政院勞工委員會,2008;勞工安全衛生組織管理及自動檢查辦法。
    [11] American Industrial Hygiene Association. 2006; Fundamentals Governing the Design and Operation of Local Exhaust Ventilation Systems.
    [12] Health and Safety Executive. 2004; Maintenance, Examination and Testing of Local Exhaust Ventilation.
    [13] Madsen U., Breum N.O., and Nielsen P.V., 1993; A Numerical and Experimental-Study of Local Exhaust Capture Efficiency. Ann Occup Hyg; 37: 593-605.
    [14] Methner M.M., 2008; Engineering case reports. Effectiveness of Local Exhaust Ventilation (LEV) in Controlling Engineered Nanomaterial Emissions during Reactor Cleanout Operations. J Occup Environ Hyg; 5: 63-9.
    [15] Li J., Yavuz I., Celik I., and Guffey S., 2007; Predicting Worker Exposure--The Effect of Ventilation Velocity, Free-stream Turbulence and Thermal Condition. J Occup Environ Hyg; 4: 864-74.
    [16] Estill C.F., Watkins D.S., Hall R.M., O'Brien D.M., and Shulman S.A., 2002; The Impact of Maintenance and Design for Ventilation Systems. Appl Occup Environ Hyg; 17: 344-51.
    [17] Huang R.F., Sir S.Y., Chen Y.K., Yeh W.Y., Chen C.W., and Chen C.C., 2001; Capture Envelopes of Rectangular Hoods in Cross Drafts. AIHA Journal; 62: 563-72.
    [18] Huang R.F., Chen J.L., Chen Y.K., Chen C.C., Yeh W.Y., and Chen C.W., 2001; The Capture Envelope of a Flanged Circular Hood in Cross Drafts. AIHA Journal; 62: 199-207.
    [19] Huang R.F., Liu G.S., Chen Y.K., Yeh W.Y., Chen C.W., Chen C.C., 2004; Effects of Flange Size on Dividing Streamlines of Exterior Hoods in Cross Drafts. J Occup Environ Hyg; 1: 283-8.
    [20] Albert E., 1936; Silicosis and Other Dust Diseases. The Harold S. Boquist Second Annual Memorial Lecture, University of Minnesota.
    [21] Theriault G.P., Burgess W.A., DiBerardinis L.J., and Peters J.M., 1974; Dust Exposure in The Vermont Granite Sheds. Arch Environ. Health; 28:12.
    [22] Occupation Safety & Health Division, Ministry of Manpower in collaboration with the Department of Mechanical Engineering, National University of Singapore. 2003; Design, Operation and Maintenance of Local Exhaust Ventilation Systems.
    [23] Semiconductor Equipment and Materials International. 2002; Environmental, Health, and Safety Guideline for Semiconductor Manufacturing Equipment.
    [24] Semiconductor Equipment and Materials International. 1993; Safety Guideline for Ventilation.
    [25] American Conference of Governmental Industrial Hygienists. 2007; Industrial Ventilation A Manual of Recommended Practice for Design 26th.
    [26] National Fire Protection Association, 2006; Standard of Protection of Semiconductor Fabrication Facilities.
    [27] 日本厚生勞動省,2007;勞動安全衛生法規。
    [28] 日本厚生勞動省,2006;粉塵障害防止規則。
    [29] 日本厚生勞動省,2006;有機溶劑中毒預防規則。
    [30] 日本厚生勞動省,2006;石棉障害予防規則。
    [31] 日本厚生勞動省,2006,鉛中毒預防規則。
    [32] Frits H.P., 1993; Fluid Flow Visualization. Focus on Scientific Visualization. pp.1-40.
    [33] Kulmala I., 1995; Numerical Simulation of The Capture Efficiency of an Unflanged Rectangular Exhaust Opening in Coaxial Air Flow. Ann. Occup. Hyg.; 39: 21-33:
    [34] DallaValle J.M., 1952; Exhaust Hoods, 2nd ed., Industrial Press, New York.
    [35] Silverman, L., 1942. Velocity Characteristics of Narrow Exhaust Slots. J. Ind. Hyg. Tox. ; 24: 267-276.
    [36] Fletcger B., 1997; Centerline Velocity Characteristics of Rectangular Unflanged Hoods and Slots Under Suction. Ann. Occup. Hyg.; 20:141-146.
    [37] Garrison R.P., 1981; Centerline Velocity Gradients for Plain and Flanged Local Exhaust Inlets. Am. Ind. Hyg. Assoc. J.; 42:739-746.
    [38] Garrison R.P., 1983; Velocity Calculation for Local Exhaust Inlets. Empirical Design Equation. Am. Ind. Hyg. Assoc. J.; 44:941-947.
    [39] Alenius S. and Jansson A., 1989; Air Flow and Particle Transport Into Local Exhaust Hoods- A Verified Computer Model. National Institute of Occupational Health, Solna, Sweden.
    [40] 沼野雄志,1996;局排設計教室,第三版,中央勞動災害防止協會,東京。
    [41] 籃重凱,2004;”軸流風扇翼型與角度對性能曲線之影響”,國立清華大學工程與系統科學所碩士論文。
    [42] 李生丕、林博正、洪振益、湯恩溶,1999;”應用類神經網路於軸流式風扇葉片設計”,中國機械工程學會第十六屆全國學術研討會論文集,pp.391-398。
    [43] 柯孟宏,2002;”Pentium 4 桌上型電腦冷卻風之數值模擬”,國立台灣科技大學機械工程所碩士論文。
    [44] Monroe R.C., 1993; Minimizing Fan Energy Consts. Chemical Engineering Cost file.
    [45] Evans J.B. 2003; Fan Selection and Sizing to Reduce Inefficiency and Low Frequency Noise Generation. Fan Noise.
    [46] 工業技術研究院能源與資源研究所,2006;”空調系統能源查核與節約能源案例手冊”。

    下載圖示 校內:2010-08-19公開
    校外:2010-08-19公開
    QR CODE