簡易檢索 / 詳目顯示

研究生: 何承軒
Ho, Cheng-Hsuan
論文名稱: 應用分子動力學於導線金屬化製程之銅晶種層濺鍍參數與阻障層材料研究
A Study on Sputtering Process Parameters and Liner/Barrier Materials of Copper Seed Layer for Interconnect Metallization via Molecular Dynamics Simulation
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 154
中文關鍵詞: 內連接半導體晶片大馬士革工藝物理氣相沉積濺鍍銅晶種層薄膜成長奧斯瓦爾德熟化導線金屬化製程分子動力學
外文關鍵詞: Copper seed layer, Integrated circuit, Interconnect, Liner/Barrier, Metallization, Molecular dynamics simulation, Ostwald ripening, Physical vapor deposition, Sputtering, Thin film growth
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內連接是半導體晶片中非常重要的元件,其功用是將晶片中的其他元件連接在一起以傳遞訊號。內連接在半導體晶圓製造的後段製程中以大馬士革工藝製造。在大馬士革製程中,最重要的一個步驟是以物理氣相沉積或濺鍍將均勻的銅晶種層沉積到內連接的溝槽中。銅晶種層需要非常均勻以利於接下來的電鍍。然而,隨著半導體先進製程的發展,晶片和內連接的尺度越縮越小,沉積均勻的銅晶種層已成為半導體製程中很大的挑戰。
    這篇論文討論了濺鍍參數,包括入射能量、入射角度、沉積率、和基材溫度以增進銅晶種層的品質。此研究也討論了不同的材料性質和阻障層材料以改善銅晶種層的均勻性。由分子動力學模擬可得知,在製程中給予系統額外能量,如增加入射能和基板溫度會使溝槽兩翼的原子往溝槽的壁面頂部擴散,造成遮蔽效應增加而使均勻性變差。降低沉積率可以增強奧斯瓦爾德熟化使壁面頂部的原子往溝槽兩翼移動,進而減少遮蔽效應而增加均勻性。調整入射的角度能改善溝槽各個部份的均勻性。
    由勢能和材料結構所造成的不同擴散勢壘是影響銅晶種層在不同材料表面沉積和成長最重要的參數。當溝槽兩翼的擴散勢壘較高而溝槽壁面的擴散勢壘較低時,原子會傾向於由溝槽壁面頂部流向溝槽兩翼,使遮蔽效應減少而增加均勻性。不同的阻障層材料中,合金比例所造成的不同擴散勢壘是影響銅晶種層成長結果的最大因素。當阻障層材料的內聚能越大時,基材受到入射銅衝擊而進入晶種層的原子會減少,合金比例也會因此降低。較低的合金比例可以減少銅晶種層受到合金基材原子勢能吸引力所增加的擴散勢壘,進而增進銅晶種層的擴散能力。這讓壁面頂部的銅原子往溝槽兩翼移動,減少遮蔽效應而增加均勻性。
    整體來說,內連接溝槽兩翼和壁面頂部的原子移動趨勢是決定銅晶種層均勻性最重要的因素。若溝槽壁面頂部的原子傾向於往溝槽兩翼擴散,遮蔽效應會降低,更多的銅原子會沉積在溝槽的底部和壁面使的均勻性增加。此研究所討論的濺鍍參數和材料性質中,不同的材料表面對銅晶種層的影響最大。溝槽壁面方向擴散勢壘低的材料表面可以成長出均勻性非常好的銅晶種層。
    這篇論文以分子動力學模擬提供了銅晶種層薄膜成長機制和製程參數與阻障層材料的相關研究。本論文也提出了銅晶種層濺鍍參數與材料性質的趨勢圖,可以做為半導體導線金屬化製程的參考。

    Interconnect, a significant element in integrated circuit (IC) as it connects individual components of the circuit into a functioning whole. It is manufactured at the back end of line of the IC fabrication by a series of process known as Damascene process. One of the most significant step in Damascene process is the physical vapor deposition or sputtering of the copper seed layer. To form a void-free interconnect, a thin and uniform copper seed layer must be deposited as a basis for electroplating. However, the shrinking size of advanced IC manufacturing has made the uniform deposition of copper seed layer more challenging than ever.
    In this thesis, process parameters of sputtering including incident energy, incident angle, deposition rate and substrate temperature are studied. Moreover, different Liner/Barrier materials and properties including the crystal planes are studied to enhance the quality of copper seed layer. It is found that giving additional energy to the atoms during sputtering process increases their diffusivity, leading atoms at the wing to flow into the trench and mainly accumulates at the top sidewall. This increases the step coverage but results in poorer uniformity and larger alloy percentage. In addition, it is shown that by decreasing the deposition rate, Ostwald ripening effect begins to dominant and increases the uniformity. Moreover, altering the incident angle could also improve the uniformity.
    Surface diffusion barrier energy caused by the potential energy and lattice structure is the dominant factor of different crystal planes. It is shown that a lower diffusion barrier energy at the sidewall direction of the trench with a larger diffusion barrier energy at the wing direction of the trench allows the atoms at the top sidewall to flow to the wing, while stopping atoms to flow the other way round. This decreases the necking and leads to a better uniformity. For different liner materials, alloy percentage of the copper seed layer is the dominant factor. With a greater cohesive energy, the alloy percentage decreases which reduce the additional diffusion barrier energy from the alloy atoms. This leads the atoms at top sidewall to flow to the wing, therefore increases the necking and uniformity.
    It is concluded that the diffusion trend of atoms at the wing and top sidewall is the decisive factor in the feature of copper seed layer. If the atoms tend to flow from the top sidewall to the wing rather than the other round, necking would increase. Atoms depositing into the trench would thus increase and lead to a better uniformity. Among the sputtering process parameters and material properties discussed in this study, surface diffusion barrier energy of different crystal planes is the most influence factor which leads to a nearly perfect necking and uniformity.
    This thesis provides an insight to various mechanisms of copper seed layer thin film growth with different process parameters and material properties by molecular dynamics simulation. Valuable trend charts are developed for tuning recipe of copper seed layer deposition for advanced interconnect metallization process.

    摘要 I Abstract III Acknowledgement V Contents VI List of tables IX List of Figures X Nomenclature XIX Chapter 1 Introduction 1 1.1 Damascene process 1 1.2 Motivation 4 1.3 Objective 7 Chapter 2 Literature review 8 2.1 Copper seed layer deposition 8 2.2 Materials of Liner/Barrier layer 9 2.3 The challenge for copper interconnect 11 2.4 Simulation of damascene process 13 Chapter 3 Theory and Methods 16 3.1 Molecular dynamics simulation 16 3.2 Interatomic potential 18 3.3 Ensemble and thermostat 27 3.4 Boundary condition 30 3.5 Numerical method 33 3.6 Neighbor lists 35 3.7 Crystal structure 39 Chapter 4 Thin film growth 43 4.1 Basic processes at surfaces 43 4.2 Chemical potential and Ostward Ripening 44 4.3 Diffusivity 45 4.4 Diffusion barrier energy 46 4.5 Surface process in this study 48 Chapter 5 Problem description and simulation modeling 49 5.1 Physical vapor deposition of copper into trench 49 5.2 Copper deposition 51 5.3 Substrate 52 5.4 Discussed parameters 56 5.5 Computation method 57 Chapter 6 Results and discussion 59 6.1 Deposition height 59 6.2 Substrate temperature 67 6.3 Incident energy 78 6.4 Incident angle 90 6.5 Deposition rate 103 6.6 Crystal planes 117 6.7 Liner materials 128 Chapter 7 Conclusions and future work 139 7.1 Conclusions 139 7.2 Future work 146 References 148

    [1] N. Kobayashi, “Advanced Nanoscale ULSI Interconnects: Fundamentals and Application,” Springer, New York, pp. 263-273, NY, 2009
    [2] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM Research, Vol. 42, No. 5, pp. 567, 1998
    [3] N. Motegi, Y. Kashimoto, K. Nagatani, S. Takahashi, T. Kondo, Y. Mizusawa, and I. Nakayama, “Long‐throw low‐pressure sputtering technology for very large‐scale integrated devices,” Journal of Vacuum Science & Technology B, Vol. 13, Iss. 4, 1995
    [4] S. M. Rossnagel, D. Mikalsen, H. Kinoshita, and J. J. Cuomo, “Collimated magnetron sputter deposition,” Journal of Vacuum Science & Technology A, Vol. 9, Iss. 2, 1991
    [5] S. M. Rossnagel and J. Hopwood, “Metal ion deposition from ionized mangetron sputtering discharge,” Journal of Vacuum Science & Technology B, Vol. 12, Iss. 1, 1994
    [6] J. Hopwood, “Ionized physical vapor deposition of integrated circuit interconnects,” Physics of Plasmas, Vol. 5, Iss. 5, 1998
    [7] Karabacak and T. M. Lu, “Enhanced step coverage by oblique angle physical vapor deposition,” Journal of Applied Physics, Vol. 97, Iss. 12, 2005
    [8] D. Edelstein, C. Uzoh, C. Cabral Jr, P. DeHaven, P. Buchwalter, Simon A, et al., “An optimal liner for copper damascene interconnects,” Proceedings of the Advanced Metallization Conference 2001, pp. 541-547, 2002
    [9] W. Wu, H. J. Wu, G. Dixit, R. Shaviv, M. Gao, T. Mountsier, et al., “Ti-based barrier for Cu interconnect applications,” Proceedings of the IEEE International Interconnect Technology Conference, pp. 202-204, 2008
    [10] C. C. Yang, S. Cohen, T. Shaw, P. C. Wang, T. Nogami, D. Edelstein, “Characterization of ultrathin-Cu/Ru(Ta)/TaN liner stack for copper interconnects,” IEEE Electron Device Letters, Vol. 31, No. 7, pp. 722-724, 2010
    [11] M. Tagami, N. Furutake, S. Saito, Y. Hayashi, “Highly-reliable low-resistance Cu interconnects with PVD-Ru/Ti barrier metal toward automotive,” IEEE Interconnect Technology Conference Proceedings, pp. 205-207, 2008
    [12] N. A. Lanzillo, C. C. Yang, K. Motoyama, H. Huang, K. Cheng, J. Maniscalco, O. Van Der Straten, C. Penny, T. Standaert, and K. Choi, "Exploring the Limits of Cobalt Liner Thickness in Advanced Copper Interconnects," in IEEE Electron Device Letters, Vol. 40, No. 11, pp. 1804-1807, 2019
    [13] B. Zhao, K. Sun, Z. Song, J. Yang, “Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization”, Applied Surface Science, Vol. 256, Iss. 20, pp.6003-6006, 2010
    [14] H. Ono, T. Nakano and T. Ohta, “Diffusion Barrier Effects Against Cu of W-N Layer Formed by Electron Cyclotron Resonance Plasma Nitridation on W Layer,” Japanese Journal of Applied Physics, Vol 34, No. 4A, 1995
    [15] Y. G. Yang, X. W. Zhou, R. A. Johnson, H. G. Wadley, “Atomistic Simulations of Deep Submicron Interconnect Metallization,” Journal of vacuum science & technology B, Vol. 20, pp. 62, 2002
    [16] J. Lu and M. J. Kushnerb, “Trench filling by ionized metal physical vapor deposition,” Journal of vacuum science & technology A, Vol. 19, No.5, 2001
    [17] S. P. Ju, C. I. Weng, C. C. Hwang, “Damascene process simulation using molecular dynamics,” Journal of Applied Physics, Vol. 92, No. 12, 2002
    [18] S. P. Ju, C. I. Weng, J. G. Chang, C. C. Hwang, “Molecular dynamics simulation of sputter trench-filling morphology in damascene process,” Journal of Vacuum Science & Technology B, 20(3):946-955, 2002
    [19] R.T. Hong, M.J. Huang, J.Y. Yang, “Molecular dynamics study of copper trench filling in damascene process,” Materials Science in Semiconductor Processing, Vol. 8, Iss. 5, pp. 587-601, 2005
    [20] R. T. Hong and J. Y. Yang, “Molecular Dynamics Study on Enhanced CuCoverage of Trench Filling with Low-Index Ta Surfaces,” Japanese Journal of Applied Physics, 51 06FF14, 2012
    [21] L. Zhao, “Tech Brief: An Introduction to Interconnects,” Lam Research, 2017
    [22] J. Hruska, “How combining cobalt and copper could improve chip yields, boost performance, Applied Materials, Extreme Tech, 2014
    [23] J. E. Jones, “On the Determination of Molecular Fields,” Proc. R. Soc. Lond. A, 106 (738): 463–477, 1924
    [24] P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels,” Physical Review, 34, pp. 57–64, 1929
    [25] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Physical Review, B 29, 6443, 1984
    [26] R. A. Johnson, “Alloy Models With the Embedded-Atom Method,” Physical Review B, Vol. 39, No.17, 1989
    [27] X. W. Zhou, R. A. Johnson, H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Physical Review B 69, 144113, 2004
    [28] C. A. Becker, F. Tavazza, Z. T. Trautt, and R.A. Buarque de Macedoc, “Considerations for choosing and using force fields and interatomic potentials in materials science and engineering,” Current Opinion in Solid State and Materials Science, 17, 277-283, 2013
    [29] L. M. Hale, Z. T. Trautt, and C. A. Becker, “Evaluating variability with atomistic simulations: the effect of potential and calculation methodology on the modeling of lattice and elastic constants,” Modelling and Simulation in Materials Science and Engineering, 26, 055003, 2018
    [30] Interatomic potential repository, NIST, Retrieved from https://www.ctcms.nist.gov/potentials
    [31] L. Verlet, “Computer experiments on classical fluids. i. thermodynamical properties of lennard - jones molecules,” Physical Review, Vol. 159, No. 1, 1967
    [32] U. Tenn, R. Caflisch, “Growth, Structure and Pattern Formation for Thin Films,” Lecture 1. Growth of Thin Films, UCLA, 2007
    [33] P. Langevin, “On the theory of Brownian motion,” C. R. Acad. Sci., 146, pp.530, 1908
    [34] Y. He, E. Borguet, “Effect of local environment on nanoscale dynamics at electrochemical interfaces: Anisotropic growth and dissolution in the presence of a step providing evidence for a Schwoebel–Ehrlich barrier at solid/liquid interfaces,” Faraday Discuss., 121, 17-25, 2002
    [35] R. W. Hockney and J. W. Eastwood, “Computer Simulations Using Particles,” McGraw-Hill, NewYork, 1981
    [36] W. Ostwald, “Lehrbuch der Allgemeinen Chemie,” Vol. 2, part 1. Leipzig, Germany., 1896
    [37] T. Michely and J. Krug.Islands, “Mounds and Atoms: Patterns and Processesin Crystal Growth far from Equilibrium,” Springer-Verlag, Berlin Heidelberg, 2003
    [38] H. Burne, “Microscopic view of epitaxial metal growth: nucleation and aggregation,” Surface Science Reports, Vol. 31, Iss. 4-6, pp. 125-229, 1998
    [39] S. Durukanoglu, O. Trushin, T. S. Rahman, “Effect of step-step separation on surface diffusion processes,” Physical Review B, 73(12), 2006
    [40] G. Ehrlich and F. G. Hudda, “Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten,” Journal of Chemical Physics, 44 1039, 1966
    [41] R. L. Schwoebel, “Step Motion on Crystal Surfaces,” Journal of Applied Physics, 37, 3682, 1966
    [42] R. Ditchfield and E. G. Seebauer, “Direct Measurement of Ion-Influenced Surface Diffusion,” Physical Review Lett, 82, 1185, 1999
    [43] R. Ditchfield and E. G. Seebauer, “Semiconductor surface diffusion: Effects of low-energy ion bombardment,” Physical Review B, 63, 125317, 2001
    [44] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene., “Microstructural evolution during film growth,” Journal of Vacuum Science & Technology A 21, S117, 2003
    [45] D. Adamović, V. Chirita, E. P. Münger, L. Hultman, and J. E. Greene, “Kinetic pathways leading to layer-by-layer growth from hyperthermal atoms: A multibillion time step molecular dynamics study,” Physical Review B 76, 115418, 2007
    [46] C. H. Wu., “The chemical potential for stress-driven surface diffusion,” Journal of the Mechanics and Physics of Solids, Volume 44, Issue 12, 1996
    [47] Z. Cao, “Thin Film Growth 1st Edition Physics,” Materials Science and Applications, Woodhead Publishing Series in Electronic and Optical Materials, 2011
    [48] A. Grazyna, E. Gertrude, “Surface Diffusion: Metals, Metal Atoms, and Clusters,” Cambridge Univ. Press, 2010
    [49] J. Wang, H. Huang, and T. S Cale, “Diffusion barriers on Cu surfaces and near steps”, Modelling and Simulation in Materials Science and Engineering, Vol. 12, No. 6, 2004
    [50] F. Fillot, Zs. Tőkei, G. P. Beyer, “Surface diffusion of copper on tantalum substrates by Ostwald ripening”, Surface Science, Vol. 601, Iss. 4, pp. 986-993, 2007
    [51] Y. Zhao and G. Lu, “First-principles simulations of copper diffusion in tantalum and tantalum nitride”, Physical Review B, 79, 214104, 2009
    [52] Y. V. Martyneko, A. V. Rogov, V. I. Shulga, “Angular distribution of atoms during the magnetron sputtering of polycrystalline targets,” Technical physics, Vol. 57. Iss. 4, pp. 439-444, 2012
    [53] D. C. Rapaport, “The Art of Molecular Dynamics Simulation (2nd ed.)”. Cambridge University Press., 2004
    [54] M. P. Allen and D. J. Tildesley., “Computer Simulation of Liquids”, Oxford: Clarendon Press., 1987
    [55] D. Frenkel and B. Smit, “Understanding Molecular Dynamics From Algorithms to Applications,” Computational Science Series Vol. 1, Academic Press, 2002
    [56] H. Dixit, J. Cho and F. Benistant, “First-principles evaluation of resistance contributions in Ruthenium interconnects for advanced technology nodes,” SISPAD, 2018
    [57] N. A. Lanzillo, K. Motoyama, T. Hook, and L. Clevenger, “Impact of line and via resistance on device performance at the 5nm gate all around node and beyond,” IITC, 2018
    [58] N. A. Lanzillo, B. D. Briggs, R. R. Robison, T. Standaert, C. Lavoie, “Electron transport across Cu/Ta(O)/Ru(O)/Cu interfaces in advanced vertical interconnects,” Computation Materials Science, 158, 398, 2019
    [59] F. W. Mont et al., "Cobalt interconnect on same copper barrier process integration at the 7nm node," 2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, pp. 1-3, 2017
    [60] Y. L. Cheng, C. Y. Lee and Y. L. Huang, “Copper Metal for Semiconductor Interconnects, Noble and Precious Metals - Properties, Nanoscale Effects and Applications.” IntechOpen, 2018

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE