簡易檢索 / 詳目顯示

研究生: 陳宏温
Chen, Hung-Wen
論文名稱: 添加MST之CaCu3Ti4O12的介電行為之理論分析
Theoretical Analysis of Dielectric Behavior of MST-doped CaCu3Ti4O12
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: CaCu3Ti4O12介電常數電極效應鈣鈦礦立方晶結構
外文關鍵詞: CaCu3Ti4O12, Dielectric constant, electrode-contact effect, Pervoskite structure
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CaCu3Ti4O12(簡稱CCTO)為鈣鈦礦立方晶結構的介電材料。此材料在室溫下擁有極高的介電常數,約104~105,並且在相當廣泛的溫度區間保持著介電持平的效應。而造成其高介電的主要機構為何,仍沒有定論,目前推斷CaCu3Ti4O12擁有高介電常數的原因為晶粒邊界及晶域邊界的效應。
    本研究探討CaCu3Ti4O12添加含有Mn、Si、Ti的混合物(MST)其介電行為的分析,並且探討電極效應的存在。

    CaCu3Ti4O12(CCTO) is a dielectric material which has pervoskite structure. This material has ultrahigh dielectric constant (about 104~105) at room temperature, and it is independent of temperature. The mechanism for inducing large dielectric response of CaCu3Ti4O12 still remains unresolved. Presently, grain boundary and domain boundary are thought as the origin of such ultrahigh dielectric constant.
    In this research, we analyze the dielectric behavior of MST- doped CaCu3Ti4O12 and the existence of electrode-contact effect.

    摘要...................................I Abstract..............................II 致謝..................................III 目錄...................................IV 表目錄.................................VI 圖目錄................................VII 第一章 緒論............................1 1-1 前言............................1 1-2 研究目的.........................3 第二章 理論基礎及文獻回顧................4 2-1基本介電理論...........................4 2-2極化機構...............................7 2-3鬆弛時間..............................19 2-4 Maxwell-Wagner model................24 2-5阻抗分析法............................27 2-6 障壁電容器...........................34 2-7 介電材料CaCu3Ti4O12概述...............37 2-7-1 CaCu3Ti4O12介電性質概述...........37 2-8-2 CaCu3Ti4O12結構..................39 2-8-3 近來發表的理論....................40 第三章 實驗方法及步驟....................51 3-1 實驗藥品.............................51 3-2 實驗流程.............................51 3-2-1 粉末的製備.......................51 3-2-2 試片製備以及燒結..................52 3-3 材料分析設備與量測方法.................53 3-3-1 X-ray繞射分析....................53 3-3-2密度量測..........................53 3-3-3電阻率、介電性質和阻抗分析量測......................................54 3-3-4掃描式電子顯微鏡(SEM)顯微觀察......................................55 3-3-5 TEM顯微結構觀察..................56 第四章 結果與討論.......................58 4-1 X-ray 繞射分析.......................58 4-2密度量測..............................62 4-3 SEM顯微結構觀察.......................63 4-4 電性分析.............................70 4-4-1 電阻率...........................70 4-4-2 介電分析.........................71 4-4-3 阻抗分析.........................85 第五章 結論............................110 參考文獻................................111 表目錄 表4-1 添加不同成分之CaCu3Ti4O12在相同的持溫條件下之相對緻密度............62 表4-2 承圖4-4(a)的EDS分析結果...........................................................................67 表4-3 承圖4-4(b)的EDS分析結果...........................................................................67 表4-4 承圖4-5的EDS分析結果...............................................................................68 表4-5 不同試片及不同電極的直流電阻和直流電阻率..........................................70 表4-6 圖4-21~4-24的阻抗分析得到的晶域電阻(Rd)..............................................90 表4-7 圖4-21~4-24的阻抗分析得到的晶域邊界電阻(Rdb)....................................90 表4-8 圖4-21~4-24的阻抗分析得到的晶粒邊界電阻(Rgb)....................................90 表4-9 圖4-26~4-30的阻抗分析得到的晶域電阻(Rd)..............................................93 表4-10圖4-26~4-30的阻抗分析得到的晶域邊界電阻(Rdb)...................................93 表4-11 圖4-26~4-30的阻抗分析得到的接觸電阻(Rcr)...........................................93 表4-12 圖4-26~4-30的阻抗分析得到的晶界電阻(Rgb)..........................................93 表4-13 圖4-32~4-36的阻抗分析得到的晶域電阻(Rd)..........................................97 表4-14 圖4-32~4-36的阻抗分析得到的晶域邊界電阻(Rdb)..................................97 表4-15 圖4-32~4-36的阻抗分析得到的接觸電阻(Rcr)...........................................97 表4-16 圖4-32~4-36的阻抗分析得到的晶界電阻(Rgb)..........................................97 表4-17 圖4-38~4-42的阻抗分析得到的晶域電阻(Rd).........................................101 表4-18 圖4-38~4-42的阻抗分析得到的晶域邊界電阻(Rdb)................................101 表4-19 圖4-38~4-42的阻抗分析得到的接觸電阻(Rcr).........................................101 表4-20 圖4-38~4-42的阻抗分析得到的晶界電阻(Rgb)........................................101 表4-21 添加0.5wt%之MST的CaCu3Ti4O12的各組RC串連的鬆弛時間(relaxation time)和頻率.................................................................................................109 表4-22 添加1wt%之MST的CaCu3Ti4O12的各組RC串連的鬆弛時間(relaxation time)和頻率.................................................................................................109 表4-23 添加1wt%之MST的CaCu3Ti4O12鍍Pt電極的各組RC串連的鬆弛時間(relaxation time)和頻率...............................................................................109 圖目錄 圖2-1 在一平行電容板極化前和極化後的比較........................................................6 圖2-2 介電材料在一施加電場的平型電容器............................................................6 圖2-3 四種極化機構之示意圖 ( a ) 電子極化 ( b ) 離子極化(c) 方向性極化或電偶極極化 (d) 空間電荷極化................................................................13 圖2-4 電子極化之示意圖 ( a ) 未施加電場 ( b ) 施加電場.................................14 圖2-5 電子極化率與外加電場頻率之關係圖..........................................................14 圖2-6 電子極化率與離子價數及半徑之示意圖......................................................15 圖2-7 離子極化之示意圖 ( a ) 未施加電場 ( b ) 施加電場.................................15 圖2-8 電偶極極化與頻率之關係圖..........................................................................16 圖2-9 由兩種不同的相所組成的電容器。由具有絕緣性的1.晶界,將具有2.導電性的晶粒分開的模型圖................................................................................16 圖2-10 圖2-8的等效電路 (a) 雙層電容器 (b) 巨觀的等效電路.....................17 圖2-11 頻率影響極化機制的介電常數和介電損失之示意圖................................18 圖2-12 理想電容器的充電和電流流動行為............................................................22 圖2-13 真實電容器的充電和電流流動行為............................................................22 圖2-14 在只有一鬆弛時間的簡單鬆弛過程中,相對介電常數、相對介電值導電度及相對損失因子與頻率之間的關係圖....................................................23 圖2-15 (a)為Maxwell-Wagner model之示意圖(b)為其電路示意圖.......................26 圖2-16 Maxwell-Wagner model之 (a) 介電常數對頻率的關係圖 (b) 介電損失對頻率的關係圖..........................................................................................26 圖2-17 ( a ) 電阻在阻抗圖中的位置 ( b ) 電容在阻抗圖中的位置......................32 圖2-18 電阻與電容並聯於阻抗圖中之示意圖.......................................................32 圖2-19 電阻與電容並聯後再串聯的電路於阻抗圖中之示意圖............................33 圖2-20 電阻與電容串聯後再並聯之電納圖............................................................33 圖2-21 晶界界面之能帶示意圖................................................................................36 圖2-22 多層障壁電容器想像模型示意圖................................................................36 圖2-23 CaCu3Ti4O12結構,鈦離子被六個氧離子所包圍,形成TiO6 八面體,Cu 原子與四個氧原子鍵結,Ca原子佔據晶格八個角落及體心位置。..........42 圖2-24 雙晶邊界示意圖............................................................................................43 圖2-25 CaCu3Ti4O12在1035℃和1065℃燒結,於不同持溫時間下各個試片的直流電阻率........................................................................................................44 圖2-26 CaCu3Ti4O12在1065℃燒結,不同持溫時間下各試片的密度...................44 圖2-27 CaCu3Ti4O12以1065℃燒結於不同持溫時間的各個試片,在外加電壓為1V、1kHz下 ( a ) 相對介電常數及 ( b )介電損失對溫度的關係圖....................................................................................................................45 圖2-28 CaCu3Ti4O12以1065℃燒結,兩種不同持溫時間 ( A ) 3小時 ( B ) 20小時試片的阻抗分析............................................................................................46 圖2-29 CaCu3Ti4O12以1065℃燒結,利用兩種不同持溫時間 ( a ) 3小時 ( b ) 20小時 試片的阻抗分析結果以及Arrhenius plots,可以得到晶域以及晶界的活化能Ea...................................................................................................46 圖2-30 CaCu3Ti4O12以1065℃在不同持溫時間下燒結,各個試片的SEM圖片,圖(a)~(f)分別代表持溫時間為0、2、3、4、6、20小時。試片經過熱腐蝕處理,熱腐蝕條件為950℃1小時..........................................................47 圖2-31 電極效應的影響............................................................................................48 圖2-32 以穿透式電子顯微鏡觀察CaCu3Ti4O12以1065℃燒結持溫20小時的試片,在晶粒的內部觀察到了晶域的存在,其中圖( a )、( b )以及( c )分別代表不同尺度下觀察到的晶域,圖( d )代表圖( c )中晶域的繞射圖形,可以發現有超晶格的存在................................................................................49 圖2-33 ( a )學者Fang提出的多晶CaCu3Ti4O12微結構模型,在晶粒內部存在著晶域以及晶域邊界 (b)該模型應用在阻抗分析上的等效電路,包含了晶域、晶域.........................................................................................................50 圖3-1 純CaCu3Ti4O12以及添加不同含量MST之CaCu3Ti4O12實驗流程圖.........57 圖4-1 純CaCu3Ti4O12以及添加不同含量MST之X-ray繞射圖.............................60 圖4-2 熱處理和未熱處理(pure,0.5wt%)之X-ray繞射圖比較................................60 圖4-3 熱處理和未熱處理(pure,1wt%)之X-ray繞射圖比較................................61 圖4-4 CaCu3Ti4O12添加 (a)0wt% (b)0.5wt% (c)1wt% 之MST於1065℃下,持溫燒結20小時之SEM圖....................................................................................66 圖4-5 CaCu3Ti4O12添加1wt% 之MST(a)有經過拋光及熱處理的試片 (b)沒有經過處理過的試片橫斷面..................................................................................67 圖4-6 CaCu3Ti4O12添加0.5wt% 之MST有經過拋光及熱處理的試片..................68 圖4-7 CaCu3Ti4O12添加(a)0.5wt% (b)1wt%之MST在倍率3000倍下的SEM圖 ...........................................................................................................................68 圖4-8 CaCu3Ti4O12添加(a)0.5wt% (b)1wt%之MST在三重交叉點之第二相的SEM圖......................................................................................................................69 圖4-9 純CaCu3Ti4O12經燒結20小時的試片於200Hz~1MHz的五個頻率下所量測(a)介電常數(b)介電損失對溫度的變化圖.................................................75 圖4-10 純CaCu3Ti4O12以及添加不同含量MST之試片在1kHz下所量測的(a)介電常數(b)介電損失對溫度的變化圖...........................................................76 圖4-11 添加0.5wt% MST之CaCu3Ti4O12之持溫時間為6小時的試片在200Hz~ 1MHz頻率下所量測的(a)介電常數(b)介電損失對溫度的變化圖............77 圖4-12 添加0.5wt% MST之CaCu3Ti4O12之持溫時間為10小時的試片在200Hz~ 1MHz頻率下所量測的(a)介電常數(b)介電損失對溫度的變化圖............78 圖4-13 添加0.5wt% MST之CaCu3Ti4O12之持溫時間為20小時的試片在200Hz~ 1MHz頻率下所量測的(a)介電常數(b)介電損失對溫度的變化圖............79 圖4-14 添加1wt% MST之CaCu3Ti4O12之持溫時間為20小時的試片在200Hz~ 1MHz頻率下所量測的(a)介電常數(b)介電損失對溫度的變化圖............80 圖4-15 純CaCu3Ti4O12之介電常數對頻率的變化圖...............................................81 圖4-16 純CaCu3Ti4O12之介電損失對頻率的變化圖...............................................81 圖4-17 添加0.5wt%MST的CaCu3Ti4O12之介電常數對頻率的變化圖...............82 圖4-18 添加0.5wt%MST的CaCu3Ti4O12之介電損失對頻率的變化圖...............82 圖4-19 添加1wt%MST的CaCu3Ti4O12之介電常數對頻率的變化圖..................83 圖4-20 添加1wt%MST的CaCu3Ti4O12之介電損失對頻率的變化圖..................83 圖4-21 添加1wt%MST的CaCu3Ti4O12在In-Ga電極以及Pt電極下的介電常數對頻率的變化圖之比較................................................................................84 圖4-22 純CaCu3Ti4O12在60℃所量測的阻抗分析圖..............................................88 圖4-23 純CaCu3Ti4O12在80℃所量測的阻抗分析圖..............................................88 圖4-24 純CaCu3Ti4O12在90℃所量測的阻抗分析圖..............................................89 圖4-25 純CaCu3Ti4O12在100℃所量測的阻抗分析圖............................................89 圖4-26 利用圖4-22~4-25的阻抗分析得到的(a)晶域(b)晶域邊界(c)晶粒邊界的活化能................................................................................................................90 圖4-27 添加0.5wt%MST的CaCu3Ti4O12在60℃所量測的阻抗分析圖................91 圖4-28 添加0.5wt%MST的CaCu3Ti4O12在70℃所量測的阻抗分析圖................91 圖4-29 添加0.5wt%MST的CaCu3Ti4O12在80℃所量測的阻抗分析圖................92 圖4-30 添加0.5wt%MST的CaCu3Ti4O12在90℃所量測的阻抗分析圖................92 圖4-31 添加0.5wt%MST的CaCu3Ti4O12在100℃所量測的阻抗分析圖..............93 圖4-32 利用圖4-27~4-31的阻抗分析得到的(a)晶域(b)晶域邊界(c)接觸電極(d)晶域邊界的活化能........................................................................................94 圖4-33 添加1wt%MST的CaCu3Ti4O12在60℃所量測的阻抗分析圖..................95 圖4-34 添加1wt%MST的CaCu3Ti4O12在70℃所量測的阻抗分析圖..................95 圖4-35 添加1wt%MST的CaCu3Ti4O12在80℃所量測的阻抗分析圖..................96 圖4-36 添加1wt%MST的CaCu3Ti4O12在90℃所量測的阻抗分析圖..................96 圖4-37 添加1wt%MST的CaCu3Ti4O12在100℃所量測的阻抗分析圖.................97 圖4-38 利用圖4-33~4-37的阻抗分析得到的(a)晶域(b)晶域邊界(c)接觸電極(d)晶粒邊界的活化能........................................................................................98 圖4-39 添加1wt%MST的CaCu3Ti4O12鍍Pt在60℃所量測的阻抗分析圖.........99 圖4-40 添加1wt%MST的CaCu3Ti4O12鍍Pt在70℃所量測的阻抗分析圖.........99 圖4-41 添加1wt%MST的CaCu3Ti4O12鍍Pt在80℃所量測的阻抗分析圖....... 100 圖4-42 添加1wt%MST的CaCu3Ti4O12鍍Pt在90℃所量測的阻抗分析圖........100 圖4-43 添加1wt%MST的CaCu3Ti4O12鍍Pt在100℃所量測的阻抗分析圖......101 圖4-44 利用圖4-39~4-43的阻抗分析得到的(a)晶域(b)晶域邊界(c)接觸電極(d)晶粒邊界的活化能......................................................................................102 圖4-45 (a)MST-wt%CaCu3Ti4O12塗附In-Ga電極(b) MST-wt%CaCu3Ti4O12塗附In-Ga電極(c) MST-wt%CaCu3Ti4O12鍍Pt電極其等效電路和實驗值表現出良好的一致性..........................................................................................103 圖4-46 添加0.5wt%的CaCu3Ti4O12之介電常數和介電損失對頻率之實驗值和模擬值比較,兩條曲線表現出良好的一致性..............................................104 圖4-47 添加1wt%的CaCu3Ti4O12之(a)介電常數和(b)介電損失對頻率之實驗值和模擬值比較,兩條曲線表現出良好的一致性......................................105 圖4-48 模擬添加(a)0.5wt%之MST的CaCu3Ti4O12的介電常數在高頻到低頻受到何種機構影響(b)在高頻的放大圖.............................................................106 圖4-49 模擬添加(a)1wt%之MST的CaCu3Ti4O12的介電常數在高頻到低頻受到何種機構影響(b)在高頻的放大圖.............................................................107 圖4-50 模擬添加(a)1wt%之MST的CaCu3Ti4O12鍍Pt電極的介電常數在高頻到低頻受到何種機構影響(b)在高頻的放大圖.............................................108

    [1] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases”, J. Solid State Chem., 151, 2, 323-325 (2000)
    [2] A. Deschanvres, B. Raveau, F. Tollemer, Bull. Soc. Chim. France, 11, 4077 (1967)
    [3] D. C. Sinclair, T. B. Adams, F. D. Morrison, A. R. West, “CaCu3Ti4O12:One-step internal barrier layer capacitor”, Appl. Phys. Lett., 80, 12, 2153-2155 (2002)
    [4] P. Lunkenheimer , V. Bobnar, A. V. Pronin, A. I.Ritus, A. A. Volkov, A. Loidl, “Origin of apparent colossal dielectric constants”, Phys. Rev. B, 66, 052105-(1-4) (2002)
    [5] T. T. Fang, and C. P. Liu, ‘‘Evidence of the Internal Domain for Inducing the Anomalously High Dielectric Constant of CaCu3Ti4O12’’, Chem. Mater. 2005, 17, 167-5171 (2005)
    [6] A.R. Von hippel, Dielectrics and Waves, Chap 31
    [7] G. C. Jain, “Properties of Electrical Engineering Materials,“ (1966)
    [8] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics”, 2nd Edition, John Wiley & Sons, New York (1976)
    [9] C. G. Koops, “On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequenies”, Phys. Rev., 83, 1, 121-124 (1951)
    [10] Vera, V. Daniel, “Dielectric Relaxation”, Electrical Research Association, Leatherhead, Surrey, England, p1-18(1967)
    [11]邱碧秀, “電子陶瓷材料”, 徐氏基金會, 臺北巿, p129-153 (1988)
    [12] J. Ross Macdonald , Impedance Spectroscopy (1987)
    [13] C. C. Homes, T. Vogt, and S. M. Shapiro, M. A. Subramanian, A. P. Ramirez “Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12” PHYSICAL REVIEW B 67, 092106 (2003)
    [14] A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S. M.Shapiro, “Giant dielectric constant response in a copper-titanate”, Solid State Communications, 115, 217-220 (2000)
    [15] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, “Optical Response of High-Dielectric-Constant perovskite-Relative Oxide”, Science 293, 673-676 (2001).
    [16] D. C. Sinclair, T. B. Adams, A. R. West, “Giant Barrier Layer Capacitance Effect in CaCu3Ti4O12”, Adv. Mater. v14, p1321(2002)
    [17] T. B. Adams, D.C. Sinclair, A. R. West, “Giant barrier layer capacitance effects in CaCu3Ti4O12”, Adv. Mater., 14, 18, 1321-1323 (2002)
    [18] A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, and applications, Chapman & Hall, London, UK (1990)
    [19] L. Wu, Y. Zhu, S. Park, S. Shapiro, G. Shirane, J. Tafto, “Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12”, Phys. Rev. B 71, 014118-(1-7) (2005)
    [20] T. B. Adams, D.C. Sinclair, A. R. West, “Characterisation of grain boundary impedances in fine- and coarsed-garined CaCu3Ti4O12 ceramics”, Phys. Rev. B 73, 0941241-9 (2006)
    [21] T. B. Adams, D.C. Sinclair, A. R. West, “The influence of processing conditions om the electrical properties of CaCu3Ti4O12 ceramics”, J. Am. Ceram. Soc., in press
    [22]蕭旭凱, “鈣鈦礦結構CaCu3Ti4O12之介電及電性的研究”, 國立 成功大學材料及工程研究所碩士論文, 2003
    [23] D. C. Sinclair, A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance”, J. Appl. Phys., 66, 8, 3850-3856 (1989)
    [24] A. J. Moulson, J. M. Herbert, Electroceramics, 2nd edition, Wiley, P326-P329
    [25] T. T. Fang, H. K. Shiau, “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12”, J. Am. Ceram. Soc., 87, 11, 2072-2079 (2004)
    [26] B. Bochu, M.N. Deschizeaux, J.C. Joibert, “Synthése et caractérisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12”, J. Solid State Chem., 29, 291 (1979)
    [27] T. T. Fang, L. T. Mei, “Evidence of Cu Deficiency:A Key Point for the Understanding of the Mystery of the Gient Dielectric Constant in CaCu3Ti4O12”, J. Am. Ceram. Soc., 90, 2, 638-640 (2007)
    [28] T. T. Fang, L. T. Mei, H. F. Ho, “Effects of Cu stoichiometry on the microstructures, barrier-layer structures, electrical conduction, dielectric responses, and stability of CaCu3Ti4O12”, Acta Materialia, 54, 10, 2867-2875 (2006)
    [29] Herbert, J. M ,Ceramic dielectrics and capacitors, New York ,1985, p202-218
    [30] M. A. Subramanian, A. W. Sleight, “ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy”, Solid State Sciences 4, 3, 347-351 (2002)
    [31] Awatef Hassini, Monique Gervais, Jérôme Coulon, Vinh Ta Phuoc, Francois Gervais, “Synthesis of Ca0.25Cu0.75TiO3 and infrared characterization of role played by copper”, Materials Science and Engineering B, 87, 2, 164-168 (2001).
    [32] L. He, J.B. Neaton, M. H. Cohen, D. Vanderbilt, C. C. Homes “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12”, Phys. Rev. B, 65, 214112-(1-11) (2002)
    [33] N. Kolev, R. P. Bontchev, A. J. Jacobson, V. N. Popov, V. G. Hadjiev, A. P. Litvinchuk, M. N. Iliev, “Raman spectroscopy of CaCu3Ti4O12”, Phys. Rev. B, 66, 132102 (2002)
    [34] H-J. Bargel and G. Schulze, Werkstoffkunde, VDI-Verlag GmbH, Dusseldorf,184-185, (1998).
    [35] Jingnan Cai, Yuan-Hua Lin, Bo Cheng, and Ce-Wen Nan Dielectric and nonlinear electrical behaviors observed in Mn-doped
    CaCu3Ti4O12 ceramic APPLIED PHYSICS LETTERS 91, 252905 (2007)
    [36] Tsang-Tse Fang, Han-Yang Chung, and Sz-Chian Liou “Manifestation of the electrode-contact effect on the dielectric response and impedance spectra of CaSiO3-doped CaCu3Ti4O12” JOURNAL OF APPLIED PHYSICS 106, 054106 (2009).
    [37] Jing Yang, Mingrong Shen , Liang Fang “The electrode/sample contact effects on the dielectric properties of the CaCu3Ti4O12 ceramic” Materials Letters 59 (2005) 3990 – 3993
    [38] 林緯傑, “不同相的TiO2及CaSiO3添加對CaCu3Ti4O12介電、導電和顯微結構的影響”,國立成功大學材料及工程研究所碩士論文(2007)
    [39] 林佳瑩,“ZrO2、ZrSiO4及CaSiO3添加對鈣鈦礦結構CaCu3Ti4O12之電性及顯微結構之探討”,國立成功大學材料及工程研究所碩士論文(2005)
    [40] 陳俊偉,“不同燒結時間的MST添加於CaCu3Ti4O12對介電、導電及顯微結構的影響”,國立成功大學材料及工程研究所碩士論文(2009)
    [41] Ming Li, Antonio Feteira, Derek C. Sinclair, and Anthony R. West,“Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics”, APPLIED PHYSICS LETTERS 88, 232903 (2006)
    [42] B. Shri Prakash, K.B.R. Varma “Influence of sintering conditions and doping on the dielectric relaxation originating from the surface layer effects in CaCu3Ti4O12 ceramics” Journal of Physics and Chemistry of Solids 68 (2007) 490–502

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE