簡易檢索 / 詳目顯示

研究生: 凃朝韡
Tu, Chao-Wei
論文名稱: 結合聲源定位與時間反轉法于聲源還原系統之開發研究
Development of the source reconstruction system by combining Sound Source Localization and Time Reversal Method
指導教授: 涂季平
Too, Gee-Pinn
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 三角聲源定位法時間反轉法脈衝響應函數到達時間差交互相關函數
外文關鍵詞: Triangulation Sound Sources Localization, Time Reversal Method, Impulse Response Function, Cross-Correlation, Time Difference of Arrival
相關次數: 點閱:198下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 辨識目標聲源的位置和提高聲源清晰度是聲訊處理的主要目標之一,本研究目的是在未知目標聲源位置的情況下,可立即以聲訊處理接收到的訊號判斷目標聲源的位置並達到還原聲源訊號的效果。其中研究主軸是將五支麥克風放置於固定陣列中,以三角聲源定位法判斷聲源位置,並結合時間反轉法(Time Reversal Method, TRM)達到還原聲源訊號的效果。時間反轉法為基礎的聲源還原技術,主要是利用回傳時間反轉之聲波訊號,藉由聲波滿足互易性原理(Reciprocity)及線性波動方程式的不變性,補償因多重路徑傳遞與傳遞介質不均勻所造成的訊號失真,使訊號得以聚焦於原聲源位置。TRM在運用上,需要利用麥克風陣列接收到的訊號和原始聲源訊號以求得環境脈衝響應函數(Impulse Response Function, IRF),在未知聲源的情況下,則必需在聲源位置放置麥克風才能得到原始聲源訊號。本論文則是將麥克風陣列以三角定位法固定位置擺放,將陣列接收到的欲還原的聲源訊號以交互相關(Cross-Correlation, CC)計算各訊號間的到達時間差(Time Difference of Arrival, TDOA),再帶入以三角定位法原理推導出的聯立方程式得到聲源位置。以此聲源位置利用球面波定理計算自由聲場下的IRF,利用此計算IRF的方法取代需要預先知道原始聲源訊號或是使用聲源位置的麥克風量測原始聲源訊號計算IRF的方法,最後將得到的自由聲場IRF以時間反轉法計算步驟得還原的聲源訊號。實驗第一部份先探討聲源定位法的精準度;第二部分以原TRM 和結合聲源定位的TRM兩者的IRF依時間反轉法處理後的聲源訊號與實際聲源位置之接收端的訊號各做相關度比較,探討結合前後的還原聲源效果。原TRM的結果為提升接收訊號30%與聲源的相關度,本論文定位法結合TRM的結果提升接收訊號9.6%與聲源的相關度,但不需事先知道聲源位置和聲源訊號並可快速的計算得到該聲源位置的IRF後,即可得到聲源還原的效果。

    This study explored the target sound source location at unknown situation and processed the received signal to determine the location of the target, including the reconstructed signal of source immediately. In this paper, it used triangulation sound sources localization and time reversal method (TRM) to reconstruct the source signals. The purpose is to use a sound source localization method with a simple device to quickly locate the position of the sound source. This method uses the microphone array to measure signal from the target sound source. Then, the sound source location is calculated and is indicated by Cartesian coordinates. The sound source location is then used to evaluate free field impulse response function which can replace the impulse response function used in time-reversal method. This process reduces the computation time greatly which makes possible for a real time source localization and source signal separation.

    摘要 I Extended Abstract III 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 符號表 XVI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-2-1 聲源定位(Sound Source Localization) 3 1-2-2 時間反轉法(Time reversal method, TRM) 7 1-3 研究內容與章節架構 9 第二章 聲源定位法 10 2-1 前言 10 2-2聲源定位模型 11 2-3四個麥克風的三維聲源定位算法 14 2-3-1 到達時間差(Time Difference of Arrival, TDOA) 14 2-3-2 方程式簡化與推導 15 2-3-3 判斷解 17 2-4 聲源定位 22 2-4-1聲源定位誤差定義 22 2-4-2 TDOA平均 22 2-4-3 聲源定位流程 24 第三章 聲源定位法與時間反轉法結合 26 3-1 前言 26 3-2 時間反轉法理論推導 26 3-3 主動式和被動式時間反轉法 31 3-4環境脈衝響應函數(Impulse Response function, IRF) 32 3-4-1 求解原被動式時間反轉法環境脈衝響應函數 32 3-4-2 定位法得的位置求自由聲場脈衝響應函數 37 3-5 聲源定位法與時間反轉法結合 38 第四章 聲源定位與時間反轉法實驗 40 4-1 前言 40 4-2聲源定位實驗架構 40 4-2-1 麥克風架 41 4-2-2 控制與量測界面 44 4-2-3 聲源 45 4-3聲源定位實驗 46 4-4 聲源定位與時間反轉法結合實驗 59 4-4-1聲源定位與時間反轉法結合實驗架構 59 4-4-2聲源定位與時間反轉法結合實驗 63 第五章 結論與未來展望 79 5-1結論 79 5-2未來展望 80 參考文獻 82

    [1]R. O. Schmidt, “New approach to geometry of range difference location,” IEEE Transactions on Aerospace and Electronic Systems, Vol. Aes8, pp. 821-835, 1972.
    [2]W. R. Hahn and S. A. Tretter, “Optimum processing for delay-vector estimation in passive signal arrays,” IEEE Transactions on Information Theory, Vol. 19, pp. 608-614, 1973.
    [3]A. Tobias, “Acoustic emission source location in two dimensions by an array of three sensors,” Non-Destructive Testing, Vol. 9, pp. 9-12, 1976.
    [4]王文龍,張艷萍,“基於四麥克風陣列的三維聲源定位”,Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2(5) , pp. 410-413, 2010.
    [5]Sean F. Wu and Na Zhu, “Locating arbitrarily time-dependent sound sources in three dimensional space in real time,” Journal of the Acoustical Society of America, Vol. 128, No. 2, pp. 728-739, 2010.
    [6]Na Zhu, “Locating and extracting acoustic and neural signals”, Wayne State University Dissertations. Paper 422, pp. 1-50, 2011.
    [7]A. H. Quazi, “An overview on the time-delay estimate in active and passive systems for target localization,” IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 29, pp. 527-533, 1981.
    [8]C. H. Knapp and G. C. Carter, “Generalized correlation method for estimation of time-delay,” IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 24, pp. 320-327, 1976.
    [9]Beamforming, B&K Technical Review, No.1, 2004.
    [10]Y. C. Choi and Y. H. Kim, “Impulsive sources localisation in noisy environment using modified beamforming method,” Mechanical Systems and Signal Processing, 20, pp. 1473-1481, 2006.
    [11]Y. C. Choi and Y. H. Kim, “Near field impulsive source localization in a noisy environment,” Journal of Sound and Vibration, 303, pp. 209-220, 2007.
    [12]W. Liu, S. Weiss, J. G. McWhirter and I. K. Proudler, “Frequency invariant beamforming for two-dimensional and three-dimensional arrays,” Signal Processing, 87, pp. 2535-2543, 2007.
    [13]P. Castellini and M. Martarelli, “Acoustic beamforming: Analysis of uncertainty and metrological performances,” Mechanical Systems and Signal Processing, 22, pp. 672-692, 2008.
    [14]J. H. Jeon and Y. H. Kim, “Localization of moving periodic impulsive so-urce in a noisy environment,” Mechanical Systems and Signal Processing, 22, pp. 753-759, 2008.
    [15]D. R. Jackson and D. R. Dowling, “Phase conjugation in underwater acoustics,” Journal of the Acoustical Society of America, 89, pp. 171–181 1991.
    [16]D. Cassereau, M. Fink, “Time-reversal of ultrasonic fields part iii: theory of the closed time-reversal cavity,” IEEE Trans. UFFC 39, pp. 567–578, 1992.
    [17]D. Cassereau, M. Fink, “Focusing with plane time-reversal mirrors: an efficient alternative to closed cavities,” Journal of the Acoustical Society of America, 94, pp. 2373–2386, 1993.
    [18]N. Chakroun, M. Fink, F. Wu, “Time reversal processing in ultrasonic nondestructive testing,” IEEE Trans. UFFC 42, pp. 1087–1098, 1995.
    [19]J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physical using a time-reversal mirror and a novel acoustic sink”, Physical Review Letters, Vol. 89(12), 124301, 2002.
    [20]G. Lerosey, J. de Rosny, A. Tourin and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal”, Science, 315, pp. 1120-1122, 2007.
    [21]S. G. Conti, P. Roux and W. A. Kuperman, “Near-field time-reversal amplification”, Journal of the Acoustical Society of America, Vol. 121(6), pp. 3602-3606, 2007.
    [22]林明宏,“時間反轉陣列之聚焦解析度分析”,國立台灣大學工程科學及海洋工程研究所碩士論文,中華民國九十五年五月。
    [23]邱永盛,“運用被動相位共軛等化理論於淺海內波環境之通訊成效分析”,國立台灣大學工程科學及海洋工程研究所博士論文,中華民國九十七年六月。
    [24]林聖哲,“應用時間反轉法與微麥克風陣列於手機裝置之抗噪技術研究”,國立成功大學系統及船舶機電工程學系研究所碩士論文,中華民國九十八年六月。
    [25]吳柏賢,“麥克風陣列訊號處理於聲源訊號分離與聲場重建之應用研究”,國立成功大學系統及船舶機電工程學系研究所博士論文,中華民國九十九年七月。
    [26]謝羽豪,“脈衝響應函數估測與被動式時間反轉理論應用於雜訊抑制及訊號分離之效能評估”,國立成功大學系統及船舶機電工程學系研究所博士論文,中華民國一百零二年七月。
    [27]Sheng-Che Lin, Gee-Pinn Too, Application of array microphone measurement for the enhancement of sound quality by use of adaptive time reversal method, Department of Systems and Naval Mechatronic Engineering Nation Cheng Kung University, (In press)
    [28]P.A. Nelson, S.H. Yoon., Estimation of acoustic source strength by inverse methods Part I, conditioning of the inverse problem, Sound and Vibration 233, pp. 643-668, 2000.
    [29]S.H. Yoon, P.A. Nelson., Estimation of acoustic source strength by inverse methods Part II, experimental investigation of methods for choosing regularization parameter, Sound and Vibration 233, pp. 669-705, 2000.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE