簡易檢索 / 詳目顯示

研究生: 江畯義
Chiang, Chun-Yi
論文名稱: 流動式晶體成核與成長技術應用於碳酸鈣晶體
A study of CaCO3 crystalline nucleation and growth employing a flow process
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 119
中文關鍵詞: 混合效率同軸混合器碳酸鈣
外文關鍵詞: mixing efficiency, coaxial jet mixer, CaCO3
相關次數: 點閱:120下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在成核結晶過程中,大多使用批次式生產,其缺點為混合效果不佳,混合過程中的過飽和度分佈不均勻,凝結核形成時間不均及成長滯留時間不一,造成粒徑分佈廣。為了改善此現象,本實驗採用流動的方式來控制成核及結晶過程,探討結晶系統中,過飽和度與溫度對晶體外觀、平均粒徑與分佈之影響,並建立流動式晶體成核與成長技術。本實驗可區分為二大部分,第一部分主要探討混合效率,除使用示波器搭配放大電路測試,也使用染料測量混合長度,探討混合長度隨內外管流速比變化之關係式。第二部分應用於碳酸鈣結晶,探討不同溫度和過飽和度對結晶晶態,粒徑分佈之影響。
    結果顯示,從示波器探討混合效率實驗得知內外管流速比愈大,混合效果愈好,而在使用染料探討混合效率實驗中,可了解會有一臨界流速比存在,使得混合長度趨近於零,即代表著混合效率良好。在合成碳酸鈣結晶中,經由XRD得知溫度愈高,calcite晶型所佔比例愈低,vaterite和aragonite晶型所佔比例愈高;過飽和度愈高,粒徑會愈小。在OM和SEM量測中,可得到晶形隨溫度以及過飽和度之變化。在加入界面活性劑之後,可有效的使晶體粒徑變小。

    Batch production is generally used in the crystallization process. However, batch production has several disadvantages: it has poor mixing efficiency ,thereby the supersaturation is not distributed evenly which leads to a unevenly nucleation rate. But the time for each nucleus formation and the time for crystal to grow are not uniform. This results in broaden size distribution. In order to improve the phenomenon, we employed a flow process for nucleation and growth. We design and setup the equipments to develop a flow type crystalline nucleation and growth process.
    The effects of supersaturation and temperature on the appearance of crystal, mean particle diameter, and particle size distribution were discussed. This study is divided into two parts: on the first part, the mixing efficiency was examined using an oscilloscope and an operation amplifier. On the other hand, a black dye was used for a visual measurement of the mixing length to obtain a correlation of the lengths with velocity ratio. On the second part, the experiments for the generation and growth CaCO3 crystal were performed under different temperatures and supersaturations.
    From the measurement using an oscilloscope to detect mixing efficiency, we find that the higher velocity ratio the better mixing is. In the dye visualization experiment, a critical velocity ratio was found at which the mixing length approaches to zero, i.e., instantly well mixing. In the formation of CaCO3 ,the XRD results showed that the higher temperature, the lower calcite composition and the higher vaterite and aragonite composition were obtained; the higher supersaturation, the smaller particle size and vice versa. The images of OM and SEM ,show an obvious variation of morphology with temperature and supersaturation; and the addition of surfactant , leads to a formation of smaller particles.

    目錄 中文摘要…………………………………………………………………………I 英文摘要……………………………………………………………………………II 致謝………………………………………………………………………………III 目錄…………………………………………………………………IV 表目錄………………………………………………VII 圖目錄………………………………………………………………IX 第一章 1.1 簡介…………………………1 1.2 研究目標……………5 第二章 2.1 混合器的選擇………………6 2.1.1 Y型混合器…………………6 2.1.2 T型混合器………………10 2.1.3同軸混合器……………………11 2.2成核理論…………………………………13 2.3不帶電晶體成長………………………19 2.3.1不帶電晶體成長理論………………20 2.3.2晶體成長機制……………………23 2.3.3次成核………………………25 第三章 3.1 實驗流程………………………………26 3.2實驗藥品及儀器……………………………32 3.3同軸混合器的設計……………33 3.4偵測線材…………………………35 3.5電路設計…………………………37 第四章 4.1示波器對混合效率探討………40 4.1.1不同電容對偵測線材靈敏度影響………40 4.1.2 不同放大倍率測試…………46 4.1.3 不同內外管間距對混合效率之影響…52 4.1.4 不同位置之混合情形…64 4.2染料對混合效率探討…68 4.2.1混合長度 ………………68 4.2.2內管直徑0.3cm ………………………70 4.2.3內管直徑0.5cm ………………………………73 4.3碳酸鈣結晶……………………………………76 4.3.1 XRD分析 ………………………………78 4.3.2 OM、SEM分析 ……………………95 4.3.3 界面活性劑影響……………………104 第五章 5.1結論………………………………………………111 5.2未來研究方向………………………113 參考文獻………………………………………114

    1. M.Volmer and A.Weber, ,Keimbildung in ubersattigten Gebilden, Z.
    Physik. Chem. (Leipzig) 119, p.227, (1926)
    2. R .Becker, and W. Doring , Kinetische Behandlung der Keimbildung in Ubersattigten Dampfen, Ann. Phys.24,719,(1935)
    3. P.P. Chiang, A Kinetic Approach to Crystallization from Ionic Solution, PHD.Dissertation .JHU.MD.USA ,(1985)
    4. A.Agrawal, L.Djenidi,and R.A.Antonia, Simulation of gas flow in
    microchannels with a sudden expansion or contraction. J. Fluid Mech.
    530, 135–144. (2005)
    5. H.Aref, S.W. Jones, , S.Mofina and I.Zawadzki , Vortices kinematics
    and chaos. Physical D 37, 423–440(1989)
    6. C. M. Ho, and Y. C.Tai, Micro-electro-mechanical systems (MEMS) and
    fluid flows. Annu. Rev.Fluid Mech. 30, 579–612 (1998)
    7. N.T. Nguyen and S. T. Werely, Fundamentals and Applications of
    Microfluidics. Artech House,Boston. 2002
    8. H. Suzuki and C. M. Ho, A magnetic force driven chaotic micro-mixer.
    IEEE ,40–43.
    9. P. Luo, and Y. Cheng,Fast liquid mixing by cross-flow
    impingement in millimeter channels .Ind. Eng. Chem. Res, 45, 863-870.
    (2006)
    10. P.C. Luo , Y. Cheng, Z.W. Wang, Y.Jin, ,and W.H. Yang, Study on the mixing behavior of thin liquid-sheet impinging jets using the PLIF
    technique. Ind. Eng. Chem. Res 45, 863.( 2006)
    11. K. J. Kim and J. K. Kim, Nucleation and supersaturation in drowning out crystallization using T-mixer, Chem. Eng. Technol., 29 ,951-956. (2006)
    12. Kim , and KJ ,Crystal growth in drowning out crystallization using T-mixer, Chem. Eng. Technol., 29 ,1267-1272. (2006)
    13. S.J. Wang , A.S. and Mujumdar ,A numerical study of flow and mixing characteristics of three-dimensional confined turbulent opposing jets:
    Unequal jets , Chem. Eng. Process. 44,1068–1074 (2005)
    14. G.Baffi, L. M.Cafiero, A.Chianese , and R. J. J.Jachuck, Process
    intensification: precipitation of barium sulfate using a spinning disk
    reactor. Ind. Eng. Chem. Res., 41, 5240. ( 2002)
    15. L.D. Marchisio, F.Omegna, A.A. Barresi,and P. Bowen ,Effect of mixing and other operating parameters in sol-gel processes, Ind. Eng.
    Chem. Res., 47, 7202–7210 (2008)
    16. W. J. A .Dah., E. F.Clifford, and G.Tryggvanson, Vortex structure and
    dynamics in the near field of a coaxial jet. J. Fluid Mech. 241, 371-402. (1992)
    17. H.Au, and N. W. M. Ko, Coaxial jets of different mean velocity ratios. J.
    Sound Vib. 116,427-443(1987)
    18. H. Rehab, E. Villermaux and E. J. Hopfinger, Flow regimes of
    large-velocity-ratio coaxial jets . Fluid Mech., vol. 345, pp. 357-381.
    (1997)
    19. R.Becker, Ann. Phys. 32,128 (1938)
    20. R.S.Bradley, Nucleation in phase change, Qiart . Rev. (London)4, 315 (1951)
    21. D.Turnbull , and J.C.Fisher , Rate of nucleation in condensed system,
    J.chem. phys. 17 , 71(1949)
    22. J.A.Christiansen, and A.E. Nielson, , On the kinetic of formation of
    precipitates of sparingly soluble salts, Acta. Chem. Scand. 5 ,673(1951)
    23. D.Turnbull, The kinetic of precipitation of barium sulphate from
    aqueous solution, Acta Metallurgical,1,684(1953)
    24. J.L.Katz, and M.D.Donohue, , A kinetic approach to homogeneous
    nucleation theory. Adv. Chem. Phys. 40 , 137(1979)
    25. J.L.Katz, and F.Spaepen, ,A kinetic approach to nucleation in condensed
    systems , Phil. Mag., B37 ,137 (1978)
    26. A.G.Walton, , Nucleation of crystals from solution, Science 148, 601
    (1965)
    27. L. Mer,and V.K., Nucleation in phase transitions , Ind. Eng. Chem.
    44,1270(1952)
    28. D.Gunn, Mechanism for the formation and growth of ionic precipitates from aqueous solution, Faraday Disc.Chem.Soc. 61,133(1976)
    29. D.Turunbull , Solid state Physics, Vol. III(Acad. Press, New York,
    p266,275,299)(1956)
    30. A.E.Nielsen,Homogeneous nucleation in barium sulphate
    precipitation,Acta.Chem.Scad.,15,441(1961)
    31. J.L.Katz and H.Wildersich, , Nucleation theory with out maxwell
    demons, J. Colloid & Int.S.,61,351(1977)
    32. W.Nerst, , Theorie der Reaktionsgeschewindigkeit in heterogenen system,Z.Phys.Chem. 47 ,52 (1904)
    33. J.W.Mullin, , Crystallization(2nd Ed., Butterworths, London, 1972 )
    34. D.O.Hayward,and B.M.Trapnell, Chemsorption(Butterworth
    Pub.)(1964)
    35. K.J.Laider and J.H.Meiser , Physical Chemistry (the Benjamin
    /Cummings Publishing Comp.Inc.1982)
    36. S.Brunauer, K.S. Love. and R.G.Keenan, Adsorption of nitrogen and the mechanism of ammonia decomposition over iron catalysis., J.Am. Chem.Soc. 64,751(1942)
    37. H.M.F.Freundlich , Kappilarchemie (Leipzig,1909)
    38. W.K.Burton , N. Cabrera, ,and F.C.Frank, , The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. A243.299(1951)
    39. A. A.Chernov , The spiral growth of crystals , Soviet Phys_Usp.
    4 ,116(1961)
    40. G.H.Gilmer , R.Ghez, and N.Cabrera, , An analysis of combined surface and volume diffusion processes in crystal growth , J. cryst. growth 8,79,(1971)
    41. I.N.Straski, Z.Phys.Chem.,136,259,(1928)
    42. W.B.Hillig ,A derivation of classical two-dimensional nucleation
    kinetics and the associated crystal growth laws, Acta. Met. 14,1868(1966)
    43. H.Owen, S.P.F., Crystal from solution, Proc. R. Soc. A197, 218 (1949)
    44. C.W Davies, and A.L.Jones, The precipitation of silver chloride from
    aqueous solutions.Part II kinetic of growth of seed crystals,
    Trans.Faraday Soc.51,812(1955)
    45. A.E.Nielsen, Theory of electrolyte crystal growth, the parabolic law , Pure&Appl. Chem.53,2025(1981)
    46. A.G.Walton, A theory of surface reaction controlled growth,
    J.Phys.Chem. 67,1920(1963)
    47. P.Bennema, Interpretation of the relation between the rate of crystal
    growth from solution and the relative supersaturation at low
    supersaturation, J. Cryst. Growth1,287(1967)
    48. C. Y. Tai, J.F. Wu and R. W. Rousseau, Interfacial supersaturation, secondary nucleation, and crystal-growth,J. Cryst. Growth 116, 294 (1992).
    49. R. Y. Qian and G. D. Botsaris, Chem. Eng. Res. Des 61, 186 (1983).
    50. M. S. Bowen, M. L. Broide and R. J. Cohen, Temporal evolution of the cluster size distribution during brownian coagulation. J. Colloid Interface Sci, 105(2), 617 (1985).
    51. J. W. Mullin, Crystallization, 2nd ed., Butterworths, London, p.175, (1972).
    52. T. P. Melia, and W. P. Moffit, Secondary Nucleation from Aqueous Solution, Ind. Eng. Chem. Fundam. 3(4), 313. (1964)
    53. N. W. Cayey, and J. Estrin, I&EC Fundamentals 6(1), 13. (1967)
    54. R. F. Strickland-Constable, in Academic Press, London and New York, (1968).
    55. W. C. Chien, C. Y. Tai and J. P. Hsu, The induction period of the CaCl2–Na2CO3 system: Theory and experiment ,J. Chem.Phys, 111(6), 2657 (1999).
    56. 周明翰, “水蒸氣在帶高電量SiO2奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2009)
    57. National semiconductor "LM741 Operation Amplifier" (2000)
    58. J.R. Clarkson, T. J. Price, and C.J.Adams., Role of metastable phases in the spontaneous precipitation of calcium carbonate, J. Chem. Soc.Faraday Trans, 88,243(1992)
    59. JCPDS資料庫
    60. S.R. Dickson and K.M. McGrath, Quantitative determination of binary and tertiary calcium carbonate mixtures using powder X-ray diffraction, Analyst, 1118,126,(2001)
    61. T. Ogino, T.Suzuki and K.Sawada, The formation and transformation mechanism of calcium carbonate in water, Geochim. Cosmochim.Acta. 51 ,2757(1987)
    62. S.Kabasci, W.Althaus,and P.M.Weinspach, Batch-precipitation of calcium carbonate from highly supersaturated solutions, Chem. Eng.-London,PT.A74,765(1996)
    63. B. D. Cullity, “Elements of X-ray Diffraction” NJ :Prentice Hall, Upper Saddle River, p.102 (2001)
    64. J.P. Andreassen, Growth and aggregation phenomena in precipitation of calcium carbonate, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2001.
    65. R.Beck, J.P.Andreassen, The onset of spherulitic growth in crystallization of calcium carbonate,J. Cryst.Growth.312, 2226(2010)
    66. 陳進成,”次微米碳酸鈣微粒之研究”成大研究發展基金會專體計畫,國立成功大學化工系(1999)

    下載圖示 校內:2013-08-16公開
    校外:2013-08-16公開
    QR CODE