簡易檢索 / 詳目顯示

研究生: 張凱迪
Chang, Kai-Ti
論文名稱: 仿生機能性彈性高分子的合成與探討
Synthesis and Characterization of Bioinspired Functional Elastomeric Polymers
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 211
中文關鍵詞: 人工虹膜液晶致動器水凝膠組織工程生物支架
外文關鍵詞: artificial iris, liquid crystal actuators, hydrogels, tissue engineering, scaffolds
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類可以從大自然中尋找各種靈感,並將其應用於科學和技術的發展。通過了解生物的結構和功能,我們能使用更少的能源和資源在工程領域上獲得更好的產率和效能。液晶材料是一種獨特且具自組裝功能的軟性物質,對外部刺激有良好的靈敏性。液晶分子可以透過物理或化學方法排列成特定的結構。此外,液晶聚合物網絡內分子排列的變化與預設計的三維結構能表現出相對應的各式運動。為了模仿自然界中蝴蝶、變色龍、章魚和人體虹膜的動作及顏色變化,在這項研究中,我們展示了用於製作人造功能性材料的聚合物之合成及設計。另外,也探討用於組織工程的生物相容性支架之製備。
    在第三章中,我們發現人眼中的虹膜括約肌可以依據光線的強度進行收縮和舒張,以調整瞳孔大小來適應環境的明暗。受到此機制的啟發,我們利用含聚多巴胺塗層的液晶彈性體,在近紅外光的照射下實現了徑向收縮。整體運動行為,類似人類虹膜基於光線變化的效果。本研究設計之功能性聚合物,其可靠的可逆性和出色的機械性也得到了證實。
    在第四章中,透過預先設計的「單鍋法」,製造了能同時顯示顏色和形狀變化的熱敏性液晶致動器。藉由使用該技術,創造了「平面共焦圓錐」排列的液晶聚合物。本研究提出的這種具新穎性「單鍋法」,能成功地合成了仿蝴蝶的掌性液晶聚合物。
    在第五章中,為了實現三維細胞培養,我們合成了一系列含有親水單體「甲基丙烯酸羥乙酯」的兩性水凝膠。由於兩性聚合物的正負電末端基間的動態相互作用力,能使水凝膠具有「自我修復」的特性。根據本研究結果,所合成的兩性水凝膠可作為三維細胞培養的生物支架,此材料將有助於組織工程和醫療領域的應用。
    在第六章中,我們使用了「二次聚合法」和「鹽浸法」來製備具三維多孔結構的液晶生物支架。本研究提出了結合液晶的配向性、和彈性體的易加工性,來製備肌肉細胞支架的新策略。使用正常人皮膚「成纖維細胞」與大鼠的「平滑肌細胞」來進行細胞培養實驗。實驗結果顯示,本研究中設計的具多孔性液晶生物支架,在組織工程領域中的人工肌肉製備,具有優異的相容性及無限的應用潛力。

    Humans can search for various inspirations from nature and apply them to the development of science and technology. By understanding the structure and function of creatures, humans can use less energy and resources to achieve better yields and efficiency in the engineering field. Liquid crystal materials are unique self-assembled functional soft substances showing absolute sensitivity to external stimulations. The liquid crystal molecules can be arranged in the specific construction with the physical or chemical aligning approaches. Furthermore, the variation of molecular arrangements inside the polymeric networks with predesigned three-dimensional constructions exhibits the corresponding actuation motions. To imitate the actions and the color variations of butterfly, chameleon, octopus, and iris in nature, in this study, we demonstrate some designation of synthetic functional polymers using for the creation of artificial functional materials. In addition, fabrication of biocompatible polymeric scaffolds for tissue engineering was also investigated.
    In chapter 3, we found that the iris sphincter muscles of human eyes can contract and relax according to the intensity of light and adjust the pupil size to adapt to the ambient light and darkness. Inspired by the behavior of human iris sphincter muscles, we utilized the liquid crystalline elastomer incorporating the polydopamine coating to achieve the radial contraction during the irradiation of near-infrared (NIR). The overall motion is similar to the effect of light variation on the human iris. Reliable reversibility and outstanding mechanical performance of the synthesized functional polymers were also confirmed.
    In chapter 4, the thermal-sensitive liquid crystal actuators showing simultaneously color and shape variations were fabricated via a predesigned one-pot method. By using the skill, the planar-co-focal conic arranged liquid crystal polymers were created. Butterfly-imitated liquid crystalline chiral polymers were successfully synthesized via this novel one-pot method.
    To achieve 3D cell culture, a series of polyampholyte (PA) hydrogels containing hydrophilic monomer HEMA were synthesized in chapter 5. The dynamic interaction between the positive and negative termini of the polyampholyte endowed the hydrogels with self-healing ability. Based on the results, the synthesized PA hydrogels are applicable as a polymeric scaffold for 3D cell culture, which will be useful for tissue engineering and medical applications.
    In chapter 6, we demonstrate the fabrication of three-dimensional porous liquid crystalline scaffolds through a two-step polymerization and a salt leaching method. The novel strategy combining the aligning properties of liquid crystals and the ease of processing of elastomers for the preparation of muscle cell scaffolds was proposed. In vitro experiments using the normal human dermal fibroblast cells and smooth muscle cells from rats were carried out. The results indicate that liquid crystalline porous scaffolds synthesized in this work show great opportunities for the fabrication of artificial muscles in tissue engineering.

    Abstract I 摘要III 誌謝V Contents VII List of Tables XIII List of Figures XIV Chapter 1 General Introduction 1 1-1 Preface 1 1-2 Research Motivations 3 1-3 References 7 Chapter 2 Review and Theoretical Background 12 2-1 Introduction of Liquid Crystals 12 2-2 Classification of Liquid Crystals 14 2-2-1 Thermotropic Liquid Crystals 14 2-2-1-1 Nematic Liquid Crystals 15 2-2-1-2 Smectic Liquid Crystals 16 2-2-1-3 Cholesteric Liquid Crystals 18 2-2-2 Lyotropic Liquid Crystals 21 2-3 Anisotropic Properties of Liquid Crystals 22 2-3-1 Birefringence of Liquid Crystals 23 2-3-2 Dielectric Properties of Liquid Crystals 25 2-4 Introduction of Photo-polymerization Reaction 26 2-5 Introduction of Liquid Crystal Polymeric Materials 28 2-6 Introduction of Liquid Crystal Actuators 30 2-6-1 Thermal Driven Liquid Crystal Actuators 31 2-6-2 Photo Driven Liquid Crystal Actuators 34 2-6-3 Electricity Driven Liquid Crystal Actuators 39 2-7 Introduction of Hydrogels 41 2-8 Classification of the Hydrogels 43 2-8-1 Physical and Chemical Hydrogels 44 2-8-2 Supramolecular Polymeric Hydrogels 47 2-9 Application of Hydrogels on Scaffold 50 2-10 Introduction of Tissue Engineering 53 2-11 References 56 Chapter 3. Photo/thermal Tunable Artificial Iris Based on Liquid Crystalline Elastomers 66 3-1 Abstract 66 3-2 Introduction 67 3-3 Experimental Section 68 3-3-1 Materials 68 3-3-2 Instrumentation 69 3-3-3 Synthesis of Bi-functional Monomer BAHB 70 3-3-4 Fabrication of Liquid Crystal Elastomers (LCEs) 71 3-3-5 Evaluation of the Mechanical Properties of the LCEs 74 3-3-6 Fabrication of Artificial Iris with LCEs 74 3-3-7 Fabrication of Near-Infrared Tunable Artificial Iris 75 3-4 Results and Discussion 76 3-4-1 Characterization of the Synthesized Compounds 76 3-4-2 Characterization of Synthesized LCEs 80 3-4-3 Thermal Actuation of Monodomain LCE 85 3-4-4 Reliability of Thermal Actuation of LCEs 86 3-4-5 Thermal Actuation of Predesigned Single LCE Piece 87 3-4-6 Fabrication of a Thermally Tunable Artificial Iris 89 3-4-7 Light Stimulation of Artificial Iris 90 3-5 Conclusions 94 3-6 References 95 Chapter 4. Thermal Tunable Chiral Nematic Liquid Crystal Films Showing Actuations with Color Variations 99 4-1 Abstract 99 4-2 Introduction 100 4-3 Experimental Section 102 4-3-1 Materials 102 4-3-2 Instrumentation 102 4-3-3 Fabrication of Liquid Crystal Cells 103 4-3-4 Preparation of Liquid Crystal Mixtures 104 4-3-5 Fabrication of LC Actuators 104 4-3-6 Reflective Analysis of LC Actuators 106 4-4 Results and Discussion 106 4-4-1 Characterization of Chiral Liquid Crystal Mixtures 106 4-4-2 Optical Properties of Chiral Liquid Crystal Mixtures 108 4-4-3 The Chiral-induced Liquid Crystal Molecular Alignment 109 4-4-4 Thermal Actuation of the LC Actuators 110 4-4-5 Effect of Chiral Dopant on Bending Angles 113 4-4-6 Thermal Properties of Chiral LC Actuators 115 4-4-7 Morphology of the LC Actuator 116 4-4-8 Variation of Reflection with Thermal Stimulation 117 4-4-9 Dual-responsive Motions of the LC Actuators 118 4-5 Conclusions 120 4-6 References 121 Chapter 5. Self-Healable Porous Polyampholyte Hydrogels as Cell Culture Scaffolds for Tissue Engineering Applications 126 5-1 Abstract 126 5-2 Introduction 127 5-3 Experimental Section 129 5-3-1 Materials 129 5-3-2 Instrumentation 129 5-3-3 Fabrication of polyampholyte (PA) hydrogels 130 5-3-4 Mechanical Analysis of PA Hydrogels 131 5-3-5 Cytotoxicity & Cell Adhesion Test for PA-X-2 and PA/HEMA-90/10-X-0.5 Hydrogels 132 5-4 Results and Discussion 134 5-4-1 Molecular Interaction in the Synthesized PA Hydrogels 134 5-4-2 Characterization of the Synthesized Hydrogels 135 5-4-3 Mechanical Properties of PA Hydrogels 138 5-4-4 Water Content of Various PA Hydrogels 140 5-4-5 Self-healing Ability of PA Hydrogels 141 5-4-6 Effect of Hydrophilicity on the Morphology of PA Hydrogels 144 5-4-7 Stability of PA Hydrogels in Saline Solutions 147 5-4-8 Cytotoxicity Test for PA-X-2 and PA/HEMA-90/10-X-0.5 Hydrogels 148 5-4-9 Cell Viability Test Evaluation for PA/HEMA-90/10-X-0.5 Hydrogels 150 5-5 Conclusions 153 5-6 References 154 Chapter 6. Fabrication of Porous Liquid Crystalline Elastomeric Scaffolds for 3D Artificial Tissues 160 6-1 Abstract 160 6-2 Introduction 161 6-3 Experimental Section 164 6-3-1 Materials 164 6-3-2 Instrumentation 165 6-3-3 Synthesis of Liquid Crystalline Elastomeric Scaffolds 165 6-3-4 Gelatin Coating on Porous Liquid Crystal Scaffolds 167 6-3-5 Scanning Electron Microscope Observation 167 6-3-6 Mechanical Property Analysis of Liquid Crystal Scaffolds 168 6-3-7 Cell Culture Study 168 6-4 Results and discussions 170 6-4-1 Fabrication of Liquid Crystal Scaffolds 170 6-4-2 Morphologies of Liquid Crystal Scaffolds 171 6-4-3 Gelatin Coating on the Liquid Crystal Scaffolds 175 6-4-4 Thermal Stability of Liquid Crystal Scaffolds 176 6-4-5 Mechanical Properties of Liquid Crystal Scaffolds 177 6-4-6 Cell Growing of NHDF on Liquid Crystal Scaffolds 179 6-4-7 Long-Term Culture of NHDF Cells on Liquid Crystal Scaffolds 182 6-4-8 Cell Growth of Smooth Muscle Cells on Liquid Crystal Scaffolds 186 6-4-9 Influence of Morphologies for Scaffolds on Cell Growth 189 6-4-10 Cell Proliferation on Liquid Crystal Scaffolds 191 6-4-11 Cell Viability on Liquid Crystal Scaffolds 196 6-5 Conclusions 200 6-6 References 201 Chapter 7. Conclusions 206 Appendix 208

    Chapter 1
    [1] Stephen, M.J. and Straley, J.P., Physics of liquid crystals. Reviews of Modern Physics, 1974. 46(4): p. 617.
    [2] Singh, S., Phase transitions in liquid crystals. Physics Reports, 2000. 324(2-4): p. 107-269.
    [3] Priestly, E., Introduction to liquid crystals. 2012: Springer Science & Business Media.
    [4] Schadt, M., Liquid crystal materials and liquid crystal displays. Annual review of materials science, 1997. 27(1): p. 305-379.
    [5] Koide, N., Liquid Crystal Display Story. 2016: Springer.
    [6] Ishii, Y., The world of liquid-crystal display TVs—Past, present, and future. Journal of Display Technology, 2007. 3(4): p. 351-360.
    [7] Moreira, M., Carvalho, I., Cao, W., Bailey, C., Taheri, B., and Palffy-Muhoray, P., Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor. Applied Physics Letters, 2004. 85(14): p. 2691-2693.
    [8] Nundy, S., Mesloub, A., Alsolami, B.M., and Ghosh, A., Electrically actuated visible and near-infrared regulating switchable smart window for energy positive building: A review. Journal of Cleaner Production, 2021. 301: p. 126854.
    [9] Snell, A., Mackenzie, K., Spear, W., LeComber, P., and Hughes, A., Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Applied Physics A, 1981. 24(4): p. 357-362.
    [10] Kuenstler, A.S., Kim, H., and Hayward, R.C., Liquid crystal elastomer waveguide actuators. Advanced Materials, 2019. 31(24): p. 1901216.
    [11] Hebner, T.S., Bowman, C.N., and White, T.J., Influence of orientational genesis on the actuation of monodomain liquid crystalline elastomers. Macromolecules, 2021. 54(9): p. 4023-4029.
    [12] Naciri, J., Srinivasan, A., Jeon, H., Nikolov, N., Keller, P., and Ratna, B.R., Nematic elastomer fiber actuator. Macromolecules, 2003. 36(22): p. 8499-8505.
    [13] Wen, Z., Yang, K., and Raquez, J.-M., A review on liquid crystal polymers in free-standing reversible shape memory materials. Molecules, 2020. 25(5): p. 1241.
    [14] Long, F., Cheng, Y., Ren, Y., Wang, J., Li, Z., Sun, A., and Xu, G., Latest Advances in Development of Smart Phase Change Material for Soft Actuators. Advanced Engineering Materials, 2021: p. 2100863.
    [15] Da Cunha, M.P., Debije, M.G., and Schenning, A.P., Bioinspired light-driven soft robots based on liquid crystal polymers. Chemical Society Reviews, 2020. 49(18): p. 6568-6578.
    [16] Zhang, L., Pan, J., Gong, C., and Zhang, A., Multidirectional biomimetic deformation of microchannel programmed metal nanowire liquid crystal networks. Journal of Materials Chemistry C, 2019. 7(34): p. 10663-10671.
    [17] Ilami, M., Bagheri, H., Ahmed, R., Skowronek, E.O., and Marvi, H., Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021. 33(19): p. 2003139.
    [18] Bedian, L., Villalba-Rodríguez, A.M., Hernández-Vargas, G., Parra-Saldivar, R., and Iqbal, H.M., Bio-based materials with novel characteristics for tissue engineering applications–A review. International journal of biological macromolecules, 2017. 98: p. 837-846.
    [19] Zhu, J. and Marchant, R.E., Design properties of hydrogel tissue-engineering scaffolds. Expert review of medical devices, 2011. 8(5): p. 607-626.
    [20] Lee, K.Y. and Mooney, D.J., Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
    [21] Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., and Dubruel, P., A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012. 33(26): p. 6020-6041.
    [22] Lee, J.H. and Kim, H.W., Emerging properties of hydrogels in tissue engineering. Journal of tissue engineering, 2018. 9: p. 2041731418768285.
    [23] Spicer, C.D., Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 2020. 11(2): p. 184-219.
    [24] Van Bemmelen, J., Das hydrogel und das krystallinische hydrat des kupferoxyds. Zeitschrift für anorganische Chemie, 1894. 5(1): p. 466-483.
    [25] Wichterle, O. and Lim, D., Hydrophilic gels for biological use. Nature, 1960. 185(4706): p. 117-118.
    [26] Magyar, J.P., Nemir, M., Ehler, E., Suter, N., PERRIARD, J.C., and Eppenberger, H.M., Mass production of embryoid bodies in microbeads. Annals of the New York Academy of Sciences, 2001. 944(1): p. 135-143.
    [27] Wu, X., Black, L., Santacana‐Laffitte, G., and Patrick Jr, C.W., Preparation and assessment of glutaraldehyde‐crosslinked collagen–chitosan hydrogels for adipose tissue engineering. Journal of biomedical materials research Part A, 2007. 81(1): p. 59-65.
    [28] Mikos, A.G., Thorsen, A.J., Czerwonka, L.A., Bao, Y., Langer, R., Winslow, D.N., and Vacanti, J.P., Preparation and characterization of poly (L-lactic acid) foams. Polymer, 1994. 35(5): p. 1068-1077.
    [29] Yoon, J.J. and Park, T.G., Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. Journal of Biomedical Materials Research, 2001. 55(3): p. 401-408.
    [30] Peppas, N.A., Hilt, J.Z., Khademhosseini, A., and Langer, R., Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials, 2006. 18(11): p. 1345-1360.
    [31] Pham, Q.P., Sharma, U., and Mikos, A.G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue engineering, 2006. 12(5): p. 1197-1211.
    [32] Mironov, V., Boland, T., Trusk, T., Forgacs, G., and Markwald, R.R., Organ printing: computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology, 2003. 21(4): p. 157-161.
    [33] Zander, F. and Finkelmann, H., State of Order of the Crosslinker in Main‐Chain Liquid Crystalline Elastomers. Macromolecular Chemistry and Physics, 2010. 211(10): p. 1167-1176.
    [34] Ahir, S.V., Tajbakhsh, A.R., and Terentjev, E.M., Self‐assembled shape‐memory fibers of triblock liquid‐crystal polymers. Advanced Functional Materials, 2006. 16(4): p. 556-560.
    [35] Chambers, M., Finkelmann, H., Remškar, M., Sánchez-Ferrer, A., Zalar, B., and Žumer, S., Liquid crystal elastomer–nanoparticle systems for actuation. Journal of Materials Chemistry, 2009. 19(11): p. 1524-1531.
    [36] Chang, K.T., Liu, C.Y., and Liu, J.H., Tunable Artificial Iris Controlled by Photo/Thermal Exposure Based on Liquid Crystalline Elastomers. Macromolecular Materials and Engineering, 2021. 306(8): p. 2100121.

    Chapter 2
    [1] Kawamoto, H., The history of liquid-crystal displays. Proceedings of the IEEE, 2002. 90(4): p. 460-500.
    [2] Collings, P.J. and Hird, M., Introduction to liquid crystals chemistry and physics. 2017: Crc Press.
    [3] Lehmann, O., Die neue Welt der flüssigen Kristalle und deren Bedeutung für Physik, Chemie, Technik und Biologie. 1911: Akademische verlagsgesellschaft mbh.
    [4] Lehmann, O., Über fliessende krystalle. Zeitschrift für physikalische Chemie, 1889. 4(1): p. 462-472.
    [5] Lehmann, O., Bemerkungen zu Fr. Reinitzers Mitteilung über die Geschichte der flüssigen Kristalle. Annalen der Physik, 1908. 332(15): p. 1099-1102.
    [6] Bahadur, B., Liquid crystals: applications and uses. Vol. 1. 1990: World scientific.
    [7] Friedel, G., Leçons de cristallographie. 1911: A. Hermann.
    [8] Palffy-Muhoray, P., Orientationally Ordered Soft Matter: The Diverse World of Liquid Crystals. Electronic-Liquid Crystal Communications (e-LC), 2007.
    [9] Krüger, G.J., Diffusion in thermotropic liquid crystals. Physics Reports, 1982. 82(4): p. 229-269.
    [10] Vertogen, G., and De Jeu, W.H., Thermotropic liquid crystals, fundamentals. Vol. 45. 2012: Springer Science & Business Media.
    [11] Paleos, C.M., and Tsiourvas, D., Thermotropic liquid crystals formed by intermolecular hydrogen bonding interactions. Angewandte Chemie International Edition in English, 1995. 34(16): p. 1696-1711.
    [12] Pisula, W., Zorn, M., Chang, J.Y., Müllen, K., and Zentel, R., Liquid crystalline ordering and charge transport in semiconducting materials. Macromolecular rapid communications, 2009. 30(14): p. 1179-1202.
    [13] Brown, G.H., Structure, properties, and some applications of liquid crystals. JOSA, 1973. 63(12): p. 1505-1514.
    [14] Clark, W.M., Topics in physical chemistry. Topics in physical chemistry., 1948.
    [15] Goodby, J.W., Materials and Phase Structures of Calamitic and Discotic Liquid Crystals. 2012.
    [16] Devadiga, D., and Ahipa, T., Recent synthetic advances in pyridine-based thermotropic mesogens. RSC advances, 2019. 9(40): p. 23161-23228.
    [17] Abberley, J.P., Killah, R., Walker, R., Storey, J., Imrie, C.T., Salamończyk, M., Zhu, C., Gorecka, E., and Pociecha, D., Heliconical smectic phases formed by achiral molecules. Nature communications, 2018. 9(1): p. 1-7.
    [18] Stephen, M.J., and Straley, J.P., Physics of liquid crystals. Reviews of Modern Physics, 1974. 46(4): p. 617.
    [19] Li, Y., Iwakura, Y., Nakayama, K., and Shimizu, H., Highly anisotropic properties of thermoplastic elastomer composites with aligned hierarchical structures. Composites science and technology, 2007. 67(13): p. 2886-2891.
    [20] Schmidtke, J., Kniesel, S., and Finkelmann, H., Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules, 2005. 38(4): p. 1357-1363.
    [21] Senyuk, B., Smalyukh, I.I., and Lavrentovich, O., Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals. Optics letters, 2005. 30(4): p. 349-351.
    [22] Mallia, V.A., and Tamaoki, N., Photochemically driven smectic− cholesteric phase transition in an inherently photoactive dimesogen. Chemistry of materials, 2003. 15(17): p. 3237-3239.
    [23] Hirshberg, Y., Photochromy in the bianthrone series. Comp. Rend, 1950. 231: p. 903.
    [24] Huang, Y., and Gui, S., Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC advances, 2018. 8(13): p. 6978-6987.
    [25] Collings, P.J., and Hird, M., Introduction to liquid crystals chemistry and physics. 2017: Crc Press.
    [26] Kumar, S., and Brock, J., Liquid crystals: experimental study of physical properties and phase transitions. 2001: Cambridge University Press.
    [27] Lord Jr, A., and Labes, M., Anisotropic ultrasonic properties of a nematic liquid crystal. Physical Review Letters, 1970. 25(9): p. 570.
    [28] Khoo, I.C., and Wu, S.T., Optics and nonlinear optics of liquid crystals. Vol. 1. 1993: world scientific.
    [29] De Gennes, P.G., and Prost, J., The physics of liquid crystals. 1993: Oxford university press.
    [30] Scolari, L., Alkeskjold, T.T., Riishede, J., Bjarklev, A., Hermann, D.S., Nielsen, M.D., and Bassi, P., Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005. 13(19): p. 7483-7496.
    [31] Belfield, K.D., and Crivello, J.V., Photoinitiated polymerization. 2003.
    [32] Dietliker, K., A compilation of photoinitiators commercially available for UV today. 2002. SITA.
    [33] Fouassier, J.P., Basics and Applications of Photopolymerization Reactions. 2010: Research Signpost.
    [34] Dadashi-Silab, S., Aydogan, C., and Yagci, Y., Shining a light on an adaptable photoinitiator: advances in photopolymerizations initiated by thioxanthones. Polymer Chemistry, 2015. 6(37): p. 6595-6615.
    [35] Fouassier, J.P., and Lalevée, J., Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons.
    [36] Pojman, J.A., Willis, J., Fortenberry, D., Ilyashenko, V., and Khan, A.M., Factors affecting propagating fronts of addition polymerization: velocity, front curvature, temperatue profile, conversion, and molecular weight distribution. Journal of Polymer Science Part A: Polymer Chemistry, 1995. 33(4): p. 643-652.
    [37] White, T.J., and Broer, D.J., Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature materials, 2015. 14(11): p. 1087-1098.
    [38] White, T.J., Photomechanical effects in liquid crystalline polymer networks and elastomers. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(9): p. 695-705.
    [39] Finkelmann, H., Kock, H.J., and Rehage, G., Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers—a new type of liquid crystalline material. Die Makromolekulare Chemie, Rapid Communications, 1981. 2(4): p. 317-322.
    [40] De Gennes, P.G., Hébert, M., and Kant, R. Artificial muscles based on nematic gels. in Macromolecular Symposia. 1997. Wiley Online Library.
    [41] Dong, L., and Zhao, Y., Photothermally driven liquid crystal polymer actuators. Materials Chemistry Frontiers, 2018. 2(11): p. 1932-1943.
    [42] Li, S., Bai, H., Liu, Z., Zhang, X., Huang, C., Wiesner, L.W., Silberstein, M., and Shepherd, R.F., Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021. 7(30): p. eabg3677.
    [43] Wang, Y., Liao, W., Sun, J., Nandi, R., and Yang, Z., Bioinspired construction of artificial cardiac muscles based on liquid crystal elastomer fibers. Advanced Materials Technologies, 2022. 7(1): p. 2100934.
    [44] Pang, X., Lv, J.A., Zhu, C., Qin, L., and Yu, Y., Photodeformable azobenzene‐containing liquid crystal polymers and soft actuators. Advanced Materials, 2019. 31(52): p. 1904224.
    [45] Barrett, C.J., Mamiya, J.I., Yager, K.G., and Ikeda, T., Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter, 2007. 3(10): p. 1249-1261.
    [46] Mamiya, J.I., Photomechanical energy conversion based on cross-linked liquid-crystalline polymers. Polymer journal, 2013. 45(3): p. 239-246.
    [47] Liu, Y., Ai, K., Liu, J., Deng, M., He, Y., and Lu, L., Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy. Advanced materials, 2013. 25(9): p. 1353-1359.
    [48] Tian, H., Wang, Z., Chen, Y., Shao, J., Gao, T., and Cai, S., Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle. ACS applied materials & interfaces, 2018. 10(9): p. 8307-8316.
    [49] Li, Z., Zhang, X., Wang, S., Yang, Y., Qin, B., Wang, K., Xie, T., Wei, Y., and Ji, Y., Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chemical science, 2016. 7(7): p. 4741-4747.
    [50] Yang, L., Setyowati, K., Li, A., Gong, S., and Chen, J., Reversible infrared actuation of carbon nanotube–liquid crystalline elastomer nanocomposites. Advanced Materials, 2008. 20(12): p. 2271-2275.
    [51] Ube, T. and Ikeda, T., Photomobile Polymer Materials with Complex 3D Deformation, Continuous Motions, Self‐Regulation, and Enhanced Processability. Advanced Optical Materials, 2019. 7(16): p. 1900380.
    [52] Cheng, Y.C., Lu, H.C., Lee, X., Zeng, H., and Priimagi, A., Kirigami‐based light‐induced shape‐morphing and locomotion. Advanced Materials, 2020. 32(7): p. 1906233.
    [53] Dong, L., Tong, X., Zhang, H., Chen, M., and Zhao, Y., Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator. Materials Chemistry Frontiers, 2018. 2(7): p. 1383-1388.
    [54] Lee, J.H., Bae, J., Hwang, J.H., Choi, M.Y., Kim, Y.S., Park, S., Na, J.H., Kim, D.G., and Ahn, S.k., Robust and Reprocessable Artificial Muscles Based on Liquid Crystal Elastomers with Dynamic Thiourea Bonds. Advanced Functional Materials, 2022. 32(13): p. 2110360.
    [55] He, Q., Wang, Z., Wang, Y., Minori, A., Tolley, M.T., and Cai, S., Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Science advances, 2019. 5(10): p. eaax5746.
    [56] Chirani, N., Yahia, L., Gritsch, L., Motta, F., Chirani, S., and Farè, S., History and applications of hydrogels. 2015.
    [57] Hennink, W.E. and van Nostrum, C.F., Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2012. 64: p. 223-236.
    [58] Thakur, S., Thakur, V.K., and Arotiba, O.A., History, classification, properties and application of hydrogels: an overview. Hydrogels, 2018: p. 29-50.
    [59] Ghobril, C. and Grinstaff, M., The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chemical Society Reviews, 2015. 44(7): p. 1820-1835.
    [60] Qiu, Y. and Park, K., Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339.
    [61] Ullah, F., Othman, M.B.H., Javed, F., Ahmad, Z., and Akil, H.M., Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 2015. 57: p. 414-433.
    [62] Lim, F. and Sun, A.M., Microencapsulated islets as bioartificial endocrine pancreas. Science, 1980. 210(4472): p. 908-910.
    [63] Hoffman, A.S., Hydrogels for biomedical applications. Advanced drug delivery reviews, 2012. 64: p. 18-23.
    [64] Mathur, A.M., Moorjani, S.K., and Scranton, A.B., Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science, Part C: Polymer Reviews, 1996. 36(2): p. 405-430.
    [65] Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H.M., and Tran, S.D., Smart hydrogels in tissue engineering and regenerative medicine. Materials, 2019. 12(20): p. 3323.
    [66] Appel, E.A., del Barrio, J., Loh, X.J., and Scherman, O.A., Supramolecular polymeric hydrogels. Chemical Society Reviews, 2012. 41(18): p. 6195-6214.
    [67] Zhou, J., Li, J., Du, X., and Xu, B., Supramolecular biofunctional materials. Biomaterials, 2017. 129: p. 1-27.
    [68] Gao, F., Xu, Z., Liang, Q., Li, H., Peng, L., Wu, M., Zhao, X., Cui, X., Ruan, C., and Liu, W., Osteochondral regeneration with 3D‐printed biodegradable high‐strength supramolecular polymer reinforced‐gelatin hydrogel scaffolds. Advanced Science, 2019. 6(15): p. 1900867.
    [69] Zhang, Y., Liao, J., Wang, T., Sun, W., and Tong, Z., Polyampholyte hydrogels with pH modulated shape memory and spontaneous actuation. Advanced Functional Materials, 2018. 28(18): p. 1707245.
    [70] Al‐Abboodi, A., Fu, J., Doran, P.M., Tan, T.T., and Chan, P.P., Injectable 3D Hydrogel Scaffold with Tailorable Porosity Post‐Implantation. Advanced healthcare materials, 2014. 3(5): p. 725-736.
    [71] Dillon, G.P., Yu, X., Sridharan, A., Ranieri, J.P., and Bellamkonda, R.V., The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. Journal of Biomaterials Science, Polymer Edition, 1998. 9(10): p. 1049-1069.
    [72] Román, J., Cabañas, M.V., Pena, J., and Vallet-Regí, M., Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds. Science and Technology of Advanced Materials, 2011.
    [73] El-Sherbiny, I.M. and Yacoub, M.H., Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science and Practice, 2013. 2013(3): p. 38.
    [74] Spicer, C.D., Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 2020. 11(2): p. 184-219.
    [75] Brunelle, A.R., Horner, C.B., Low, K., Ico, G., and Nam, J., Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Acta biomaterialia, 2018. 66: p. 166-176.
    [76] Mohanty, S., Alm, M., Hemmingsen, M., Dolatshahi-Pirouz, A., Trifol, J., Thomsen, P., Dufva, M., Wolff, A., and Emnéus, J., 3D printed silicone–hydrogel scaffold with enhanced physicochemical properties. Biomacromolecules, 2016. 17(4): p. 1321-1329.
    [77] Khademhosseini, A. and Langer, R., Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-5092.
    [78] Xu, F., Finley, T.D., Turkaydin, M., Sung, Y., Gurkan, U.A., Yavuz, A.S., Guldiken, R.O., and Demirci, U., The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials, 2011. 32(31): p. 7847-7855.
    [79] Du, Y., Lo, E., Ali, S., and Khademhosseini, A., Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proceedings of the National Academy of Sciences, 2008. 105(28): p. 9522-9527.
    [80] Asadian, M., Chan, K.V., Norouzi, M., Grande, S., Cools, P., Morent, R., and De Geyter, N., Fabrication and plasma modification of nanofibrous tissue engineering scaffolds. Nanomaterials, 2020. 10(1): p. 119.
    [81] Lu, T., Li, Y., and Chen, T., Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International journal of nanomedicine, 2013. 8: p. 337.

    Chapter 3
    [1] Zeng, H., Wani, O.M., Wasylczyk, P., Kaczmarek, R., and Priimagi, A., Self-regulating iris based on light-actuated liquid crystal elastomer. Advanced materials, 2017. 29(30): p. 1701814.
    [2] Schuhladen, S., Preller, F., Rix, R., Petsch, S., Zentel, R., and Zappe, H., Iris-like tunable aperture employing liquid-crystal elastomers. Advanced materials, 2014. 26(42): p. 7247-7251.
    [3] Kim, S.G., Kim, D., Kim, S., Yoon, J., and Lee, H.S., Human-Iris-Like Aperture and Sphincter Muscle Comprising Hyperelastic Composite Hydrogels Containing Graphene Oxide. Macromolecular Materials and Engineering, 2019. 304(1): p. 1800560.
    [4] Raducanu, B.C., Zaliasl, S., Stanzione, S., van Liempd, C., Quintero, A.V., De Smet, H., De Baets, J., Van Hoof, C., and Van Helleputte, N., An artificial iris ASIC with high voltage liquid crystal driver, 10-nA light range detector and 40-nA blink detector for LCD flicker removal. IEEE Solid-State Circuits Letters, 2020. 3: p. 506-509.
    [5] Koch, K.R., Heindl, L.M., Cursiefen, C., and Koch, H.R., Artificial iris devices: benefits, limitations, and management of complications. Journal of Cataract & Refractive Surgery, 2014. 40(3): p. 376-382.
    [6] Shareef, F.J., Sun, S., Kotecha, M., Kassem, I., Azar, D., and Cho, M., Engineering a light-attenuating artificial iris. Investigative Ophthalmology & Visual Science, 2016. 57(4): p. 2195-2202.
    [7] Petsch, S., Rix, R., Khatri, B., Schuhladen, S., Müller, P., Zentel, R., and Zappe, H., Smart artificial muscle actuators: Liquid crystal elastomers with integrated temperature feedback. Sensors and Actuators A: Physical, 2015. 231: p. 44-51.
    [8] He, Q., Wang, Z., Wang, Y., Song, Z., and Cai, S., Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Applied Materials & Interfaces, 2020. 12(31): p. 35464-35474.
    [9] Rogóż, M., Dradrach, K., Xuan, C., and Wasylczyk, P., A millimeter-scale snail robot based on A light-powered liquid crystal elastomer continuous actuator. Macromolecular rapid communications, 2019. 40(16): p. 1900279.
    [10] Yang, Y., Zhan, W., Peng, R., He, C., Pang, X., Shi, D., Jiang, T., and Lin, Z., Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Advanced Materials, 2015. 27(41): p. 6376-6381.
    [11] Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C.O., and Yang, S., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 2020. 2(6): p. 1900163.
    [12] Ware, T.H., Biggins, J.S., Shick, A.F., Warner, M., and White, T.J., Localized soft elasticity in liquid crystal elastomers. Nature communications, 2016. 7(1): p. 1-7.
    [13] McConney, M.E., Martinez, A., Tondiglia, V.P., Lee, K.M., Langley, D., Smalyukh, I.I., and White, T.J., Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Advanced Materials, 2013. 25(41): p. 5880-5885.
    [14] Shahsavan, H., Salili, S.M., Jákli, A., and Zhao, B., Smart muscle-driven self-cleaning of biomimetic microstructures from liquid crystal elastomers. Advanced Materials, 2015. 27(43): p. 6828-6833.
    [15] de Haan, L.T., Gimenez-Pinto,, V., Konya, A., Nguyen, S., Verjans, M., Sánchez-Somolinos, C., Selinger, J.V., Selinger, R.L., Broer, D.J., and Schenning, A.P., Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Advanced Functional Materials, 2014. 24(9): p. 1251-1258.
    [16] Dai, M., Picot, O.T., Verjans, J.M., de Haan, L.T., Schenning, A.P., Peijs, T., and Bastiaansen, C.W., Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS applied materials & interfaces, 2013. 5(11): p. 4945-4950.
    [17] Verpaalen, R.C., Debije, M.G., Bastiaansen, C.W., Halilović, H., Engels, T.A., and Schenning, A.P., Programmable helical twisting in oriented humidity-responsive bilayer films generated by spray-coating of a chiral nematic liquid crystal. Journal of Materials Chemistry A, 2018. 6(36): p. 17724-17729.
    [18] Boothby, J., and Ware, T., Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. Soft Matter, 2017. 13(24): p. 4349-4356.
    [19] Saed, M.O., Torbati, A.H., Nair, D.P., and Yakacki, C.M., Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. Journal of Visualized Experiments, 2016(107): p. e53546.
    [20] Saed, M.O., Ambulo, C.P., Kim, H., De, R., Raval, V., Searles, K., Siddiqui, D.A., Cue, J.M.O., Stefan, M.C., and Shankar, M.R., Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Advanced Functional Materials, 2019. 29(3): p. 1806412.
    [21] Frick, C.P., Merkel, D.R., Laursen, C.M., Brinckmann, S.A., and Yakacki, C.M., Copper-Coated Liquid-Crystalline Elastomer via Bioinspired Polydopamine Adhesion and Electroless Deposition. Macromolecular rapid communications, 2016. 37(23): p. 1912-1917.
    [22] Merkel, D.R., Shaha, R.K., Yakacki, C.M., and Frick, C.P., Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading. Polymer, 2019. 166: p. 148-154.
    [23] Higuchi, S., Ishibashi, K., Aritake, S., Enomoto, M., Hida, A., Tamura, M., Kozaki, T., Motohashi, Y., and Mishima, K., Inter-individual difference in pupil size correlates to suppression of melatonin by exposure to light. Neuroscience letters, 2008. 440(1): p. 23-26.

    Chapter 4
    [1] Hoekstra, D.C., Debije, M.G., and Schenning, A.P., Triple-shape-memory soft actuators from an interpenetrating network of hybrid liquid crystals. Macromolecules, 2021. 54(12): p. 5410-5416.
    [2] Han, W.C., Sim, G.W., Kim, Y.B., and Kim, D.S., Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromolecular Rapid Communications, 2021. 42(21): p. 2100404.
    [3] Liu, H., Tian, H., Shao, J., Wang, Z., Li, X., Wang, C., and Chen, X., An electrically actuated soft artificial muscle based on a high-performance flexible electrothermal film and liquid-crystal elastomer. ACS Applied Materials & Interfaces, 2020. 12(50): p. 56338-56349.
    [4] Zhang, L., Pan, J., Liu, Y., Xu, Y., and Zhang, A., NIR–UV responsive actuator with graphene oxide/microchannel-induced liquid crystal bilayer structure for biomimetic devices. ACS Applied Materials & Interfaces, 2020. 12(5): p. 6727-6735.
    [5] Kent, T.A., Ford, M.J., Markvicka, E.J., and Majidi, C., Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunctional Materials, 2020. 3(2): p. 025003.
    [6] Petsch, S., Rix, R., Khatri, B., Schuhladen, S., Müller, P., Zentel, R., and Zappe, H., Smart artificial muscle actuators: Liquid crystal elastomers with integrated temperature feedback. Sensors and Actuators A: Physical, 2015. 231: p. 44-51.
    [7] Liu, J., Gao, Y., Wang, H., Poling-Skutvik, R., Osuji, C.O., and Yang, S., Shaping and locomotion of soft robots using filament actuators made from liquid crystal elastomer–carbon nanotube composites. Advanced Intelligent Systems, 2020. 2(6): p. 1900163.
    [8] Saed, M.O., Torbati, A.H., Nair, D.P. and Yakacki, C.M., Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. Journal of Visualized Experiments, 2016(107): p. e53546.
    [9] Ware, T.H., Biggins, J.S., Shick, A.F., Warner, M., and White, T.J., Localized soft elasticity in liquid crystal elastomers. Nature communications, 2016. 7(1): p. 1-7.
    [10] Guin, T., Settle, M.J., Kowalski, B.A., Auguste, A.D., Beblo, R.V., Reich, G.W., and White, T.J., Layered liquid crystal elastomer actuators. Nature communications, 2018. 9(1): p. 1-7.
    [11] Chen, Q., Li, Y., Yang, Y., Xu, Y., Qian, X., Wei, Y., and Ji, Y., Durable liquid-crystalline vitrimer actuators. Chemical science, 2019. 10(10): p. 3025-3030.
    [12] Liu, W., Guo, L.X., Lin, B.P., Zhang, X.Q., Sun, Y., and Yang, H., Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers. Macromolecules, 2016. 49(11): p. 4023-4030.
    [13] Pei, Z., Yang, Y., Chen, Q., Terentjev, E.M., Wei, Y., and Ji, Y., Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature materials, 2014. 13(1): p. 36-41.
    [14] Huang, Y., Bisoyi, H.K., Huang, S., Wang, M., Chen, X.M., Liu, Z., Yang, H., and Li, Q., Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angewandte Chemie International Edition, 2021. 60(20): p. 11247-11251.
    [15] Tang, D., Zhang, L., Zhang, X., Xu, L., Li, K., and Zhang, A., Bio-Mimetic Actuators of a Photothermal-Responsive Vitrimer Liquid Crystal Elastomer with Robust, Self-Healing, Shape Memory, and Reconfigurable Properties. ACS Applied Materials & Interfaces, 2021. 14(1): p. 1929-1939.
    [16] Wang, M., Hu, X.B., Zuo, B., Huang, S., Chen, X.M., and Yang, H., Liquid crystal elastomer actuator with serpentine locomotion. Chemical Communications, 2020. 56(55): p. 7597-7600.
    [17] Van Oosten, C.L., Bastiaansen, C.W., and Broer, D.J., Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature materials, 2009. 8(8): p. 677-682.
    [18] Yu, Y., Li, L., Liu, E., Han, X., Wang, J., Xie, Y.X., and Lu, C., Light-driven core-shell fiber actuator based on carbon nanotubes/liquid crystal elastomer for artificial muscle and phototropic locomotion. Carbon, 2022. 187: p. 97-107.
    [19] Liu, Z., Bisoyi, H.K., Huang, Y., Wang, M., Yang, H., and Li, Q., Thermo‐and Mechanochromic Camouflage and Self‐Healing in Biomimetic Soft Actuators Based on Liquid Crystal Elastomers. Angewandte Chemie International Edition, 2022. 61(8): p. e202115755.
    [20] Xiao, Y.Y., Jiang, Z.C., Hou, J.B., and Zhao, Y., Desynchronized liquid crystalline network actuators with deformation reversal capability. Nature communications, 2021. 12(1): p. 1-10.
    [21] Shahsavan, H., Yu, L., Jákli, A., and Zhao, B., Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter, 2017. 13(44): p. 8006-8022.
    [22] Lv, J.A., Liu, Y., Wei, J., Chen, E., Qin, L., and Yu, Y., Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016. 537(7619): p. 179-184.
    [23] Teyssier, J., Saenko, S.V., Van Der Marel, D., and Milinkovitch, M.C., Photonic crystals cause active colour change in chameleons. Nature communications, 2015. 6(1): p. 1-7.
    [24] Kim, H., Choi, J., Kim, K.K., Won, P., Hong, S., and Ko, S.H., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nature communications, 2021. 12(1): p. 1-11.
    [25] Stuart-Fox, D., Moussalli, A., and Whiting, M.J., Predator-specific camouflage in chameleons. Biology letters, 2008. 4(4): p. 326-329.
    [26] Aizen, R., Tao, K., Rencus-Lazar, S., and Gazit, E., Functional metabolite assemblies—a review. Journal of Nanoparticle Research, 2018. 20(5): p. 1-9.
    [27] Yan, Y., Liu, L., Cai, Z., Xu, J., Xu, Z., Zhang, D., and Hu, X., Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon. Scientific reports, 2016. 6(1): p. 1-9.
    [28] Brannum, M.T., Steele, A.M., Venetos, M.C., Korley, L.T., Wnek, G.E., and White, T.J., Light control with liquid crystalline elastomers. Advanced Optical Materials, 2019. 7(6): p. 1801683.
    [29] Kizhakidathazhath, R., Geng, Y., Jampani, V.S.R., Charni, C., Sharma, A., and Lagerwall, J.P., Facile anisotropic deswelling method for realizing large‐area cholesteric liquid crystal elastomers with uniform structural color and broad-range mechanochromic response. Advanced Functional Materials, 2020. 30(7): p. 1909537.
    [30] Zhang, Y.S., Jiang, S.A., Lin, J.D., and Lee, C.R., Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020. 8(16): p. 5517-5524.
    [31] Chang, K.T., Liu, C.Y., and Liu, J.H., Bioinspired thermal/light-tunable actuators based on predesigned tilted liquid crystal actuators. Journal of Materials Science, 2021. 56(21): p. 12350-12363.

    Chapter 5
    [1] Zhong, J., Li, L., Zhu, X., Guan, S., Yang, Q., Zhou, Z., Zhang, Z., and Huang, Y., A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials, 2015. 65: p. 43-55.
    [2] Wei, J., Yin, C., Wang, H., and Wang, Q., Polyampholyte-doped aligned polymer hydrogels as anisotropic electrolytes for ultrahigh-capacity supercapacitors. Journal of Materials Chemistry A, 2018. 6(1): p. 58-64.
    [3] Koçer, G., Ter Schiphorst, J., Hendrikx, M., Kassa, H.G., Leclère, P., Schenning, A.P., and Jonkheijm, P., Light‐responsive hierarchically structured liquid crystal polymer networks for harnessing cell adhesion and migration. Advanced materials, 2017. 29(27): p. 1606407.
    [4] Minami, K., Kasuya, Y., Yamazaki, T., Ji, Q., Nakanishi, W., Hill, J.P., Sakai, H., and Ariga, K., Highly ordered 1d fullerene crystals for concurrent control of macroscopic cellular orientation and differentiation toward large‐scale tissue engineering. Advanced Materials, 2015. 27(27): p. 4020-4026.
    [5] Daniele, M.A., Boyd, D.A., Adams, A.A., and Ligler, F.S., Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Advanced healthcare materials, 2015. 4(1): p. 11-28.
    [6] Watson, B.M., Vo, T.N., Tatara, A.M., Shah, S.R., Scott, D.W., Engel, P.S., and Mikos, A.G., Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Biomaterials, 2015. 67: p. 286-296.
    [7] Wang, M.O., Vorwald, C.E., Dreher, M.L., Mott, E.J., Cheng, M.H., Cinar, A., Mehdizadeh, H., Somo, S., Dean, D., and Brey, E.M., Evaluating 3D‐Printed biomaterials as scaffolds for vascularized bone tissue engineering. Advanced Materials, 2015. 27(1): p. 138-144.
    [8] Denry, I., and Kuhn, L.T., Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016. 32(1): p. 43-53.
    [9] Kundu, J., Shim, J.H., Jang, J., Kim, S.W., and Cho, D.W., An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of tissue engineering and regenerative medicine, 2015. 9(11): p. 1286-1297.
    [10] Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., and Chen, P., Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnology advances, 2017. 35(5): p. 530-544.
    [11] Irani, M., Ismail, H., and Ahmad, Z., Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polymer Testing, 2013. 32(3): p. 502-512.
    [12] Bao, Y., Ma, J., and Li, N., Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydrate Polymers, 2011. 84(1): p. 76-82.
    [13] Zhai, D., Liu, B., Shi, Y., Pan, L., Wang, Y., Li, W., Zhang, R., and Yu, G., Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS nano, 2013. 7(4): p. 3540-3546.
    [14] Lee, B.P., and Konst, S., Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Advanced Materials, 2014. 26(21): p. 3415-3419.
    [15] Harmon, M.E., Tang, M., and Frank, C.W., A microfluidic actuator based on thermoresponsive hydrogels. Polymer, 2003. 44(16): p. 4547-4556.
    [16] Zhao, Q., Dunlop, J.W., Qiu, X., Huang, F., Zhang, Z., Heyda, J., Dzubiella, J., Antonietti, M., and Yuan, J., An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nature communications, 2014. 5(1): p. 1-8.
    [17] Karlgard, C., Wong, N., Jones, L., and Moresoli, C., In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. International journal of pharmaceutics, 2003. 257(1-2): p. 141-151.
    [18] Hu, X., Hao, L., Wang, H., Yang, X., Zhang, G., Wang, G., and Zhang, X., Hydrogel contact lens for extended delivery of ophthalmic drugs. International Journal of Polymer Science, 2011. 2011.
    [19] Nicolson, P.C., and Vogt, J., Soft contact lens polymers: an evolution. Biomaterials, 2001. 22(24): p. 3273-3283.
    [20] Nowak, A.P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D.J., Pochan, D., and Deming, T.J., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002. 417(6887): p. 424-428.
    [21] Ma, P.X., and Choi, J.W., Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue engineering, 2001. 7(1): p. 23-33.
    [22] Mawad, D., Stewart, E., Officer, D.L., Romeo, T., Wagner, P., Wagner, K., and Wallace, G.G., A single component conducting polymer hydrogel as a scaffold for tissue engineering. Advanced Functional Materials, 2012. 22(13): p. 2692-2699.
    [23] Nguyen, K.T., and West, J.L., Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 2002. 23(22): p. 4307-4314.
    [24] Kopeček, J., Smart and genetically engineered biomaterials and drug delivery systems. European Journal of Pharmaceutical Sciences, 2003. 20(1): p. 1-16.
    [25] Li, J., and Mooney, D.J., Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 2016. 1(12): p. 1-17.
    [26] Murdan, S., Electro-responsive drug delivery from hydrogels. Journal of controlled release, 2003. 92(1-2): p. 1-17.
    [27] Bhattarai, N., Gunn, J., and Zhang, M., Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 2010. 62(1): p. 83-99.
    [28] Roy, C.K., Guo, H.L., Sun, T.L., Ihsan, A.B., Kurokawa, T., Takahata, M., Nonoyama, T., Nakajima, T., and Gong, J.P., Self‐Adjustable Adhesion of Polyampholyte Hydrogels. Advanced materials, 2015. 27(45): p. 7344-7348.
    [29] Tan, B.H., Ravi, P., and Tam, K.C., Synthesis and characterization of novel pH‐responsive polyampholyte microgels. Macromolecular rapid communications, 2006. 27(7): p. 522-528.
    [30] Ihsan, A.B., Sun, T.L., Kurokawa, T., Karobi, S.N., Nakajima, T., Nonoyama, T., Roy, C.K., Luo, F., and Gong, J.P., Self-healing behaviors of tough polyampholyte hydrogels. Macromolecules, 2016. 49(11): p. 4245-4252.
    [31] Zurick, K.M., and Bernards, M., Recent biomedical advances with polyampholyte polymers. Journal of Applied Polymer Science, 2014. 131(6).
    [32] Xu, K., Tan, Y., Chen, Q., An, H., Li, W., Dong, L., and Wang, P., A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. Journal of colloid and interface science, 2010. 345(2): p. 360-368.
    [33] Guiseppi-Elie, A., Dong, C., and Dinu, C.Z., Crosslink density of a biomimetic poly (HEMA)-based hydrogel influences growth and proliferation of attachment dependent RMS 13 cells. Journal of Materials Chemistry, 2012. 22(37): p. 19529-19539.
    [34] Lin, C.H., Jao, W.C., Yeh, Y.H., Lin, W.C., and Yang, M.C., Hemocompatibility and cytocompatibility of styrenesulfonate-grafted PDMS–polyurethane–HEMA hydrogel. Colloids and Surfaces B: Biointerfaces, 2009. 70(1): p. 132-141.
    [35] Lord, M.S., Stenzel, M.H., Simmons, A., and Milthorpe, B.K., The effect of charged groups on protein interactions with poly (HEMA) hydrogels. Biomaterials, 2006. 27(4): p. 567-575.
    [36] Huang, X., and Lowe, T.L., Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules, 2005. 6(4): p. 2131-2139.
    [37] Goda, T., Watanabe, J., Takai, M., and Ishihara, K., Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer, 2006. 47(4): p. 1390-1396.
    [38] Kostina, N.Y., Sharifi, S., de los Santos Pereira, A., Michálek, J., Grijpma, D.W., and Rodriguez-Emmenegger, C., Novel antifouling self-healing poly (carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties. Journal of Materials Chemistry B, 2013. 1(41): p. 5644-5650.
    [39] Kuo, C.K., and Ma, P.X., Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials, 2001. 22(6): p. 511-521.
    [40] Vollrath, A., Pretzel, D., Pietsch, C., Perevyazko, I., Schubert, S., Pavlov, G.M., and Schubert, U.S., Preparation, cellular internalization, and biocompatibility of highly fluorescent PMMA nanoparticles. Macromolecular rapid communications, 2012. 33(20): p. 1791-1797.
    [41] Li, P., Poon, Y.F., Li, W., Zhu, H.Y., Yeap, S.H., Cao, Y., Qi, X., Zhou, C., Lamrani, M., and Beuerman, R.W., A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nature materials, 2011. 10(2): p. 149-156.

    Chapter 6
    [1] Langer, R., and Vacanti, J. P., Tissue engineering. Science, 1993. 260(5110): p. 920-926.
    [2] Lanza, R., Langer, R., Vacanti, J. P., and Atala, A., Principles of tissue engineering. 2020: Academic press.
    [3] Khademhosseini, A., and Langer, R., A decade of progress in tissue engineering. Nature protocols, 2016. 11(10): p. 1775-1781.
    [4] Mastrogiacomo, M., Muraglia, A., Komlev, V., Peyrin, F., Rustichelli, F., Crovace, A., and Cancedda, R., Tissue engineering of bone: search for a better scaffold. Orthodontics & craniofacial research, 2005. 8(4): p. 277-284.
    [5] Freed, L. E., Langer, R., Martin, I., Pellis, N. R., and Vunjak-Novakovic, G., Tissue engineering of cartilage in space. Proceedings of the National Academy of Sciences, 1997. 94(25): p. 13885-13890.
    [6] Böttcher-Haberzeth, S., Biedermann, T., and Reichmann, E., Tissue engineering of skin. Burns, 2010. 36(4): p. 450-460.
    [7] Cieslinski, D. A., and David Humes, H., Tissue engineering of a bioartificial kidney. Biotechnology and bioengineering, 1994. 43(7): p. 678-681.
    [8] Atala, A., Engineering tissues, organs and cells. Journal of tissue engineering and regenerative medicine, 2007. 1(2): p. 83-96.
    [9] Nikolova, M. P., and Chavali, M. S., Recent advances in biomaterials for 3D scaffolds: A review. Bioactive materials, 2019. 4: p. 271-292.
    [10] Sachlos, E., and Czernuszka, J. T., Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003. 5(29): p. 39-40.
    [11] Velema, J., and Kaplan, D., Biopolymer-based biomaterials as scaffolds for tissue engineering. Tissue engineering I, 2006: p. 187-238.
    [12] Tabata, Y., Biomaterial technology for tissue engineering applications. Journal of the Royal Society interface, 2009. 6(suppl_3): p. S311-S324.
    [13] Hoque, M. E., Chuan, Y. L., and Pashby, I., Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers, 2012. 97(2): p. 83-93.
    [14] Leong, K. F., Chua, S. C., Sudarmadji, N., and Yeong, W. Y., Engineering functionally graded tissue engineering scaffolds. Journal of the mechanical behavior of biomedical materials, 2008. 1(2): p. 140-152.
    [15] Olson, J. L., Atala, A., and Yoo, J. J., Tissue engineering: current strategies and future directions. Chonnam medical journal, 2011. 47(1): p. 1-13.
    [16] Lien, S. M., Ko, L. Y., and Huang, T. J., Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta biomaterialia, 2009. 5(2): p. 670-679.
    [17] Stone, K. R., Steadman, J. R., Rodkey, W. G., and Li, S. T., Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. JBJS, 1997. 79(12): p. 1770.
    [18] Müller, F. A., Müller, L., Hofmann, I., Greil, P., Wenzel, M. M., and Staudenmaier, R., Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials, 2006. 27(21): p. 3955-3963.
    [19] Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J., Hu, X., and Han, C., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003. 24(26): p. 4833-4841.
    [20] Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y. X., and Wang, S., Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004. 25(10): p. 1891-1900.
    [21] Gautam, S., Dinda, A. K., and Mishra, N. C., Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Materials Science and Engineering: C, 2013. 33(3): p. 1228-1235.
    [22] Geary, J. M., Goodby, J. W., Kmetz, A. R., and Patel, J. S., The mechanism of polymer alignment of liquid‐crystal materials. Journal of applied physics, 1987. 62(10): p. 4100-4108.
    [23] Ishihara, S., Wakemoto, H., Nakazima, K., and Matsuo, Y., The effect of rubbed polymer films on the liquid crystal alignment. Liquid Crystals, 1989. 4(6): p. 669-675.
    [24] Wei, X., Hong, S. C., Zhuang, X., Goto, T., and Shen, Y. R., Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface. Physical Review E, 2000. 62(4): p. 5160.
    [25] Jiao, M., Ge, Z., Song, Q., and Wu, S. T., Alignment layer effects on thin liquid crystal cells. Applied Physics Letters, 2008. 92(6): p. 061102.
    [26] Prévôt, M. E., Andro, H., Alexander, S. L. M., Ustunel, S., Zhu, C., and Nikolov, Z., Liquid crystal elastomer foams with elastic properties specifically engineered as biodegradable brain tissue scaffolds. Soft Matter, 2018. 14(3): p. 354-360.
    [27] Xie, W., Ouyang, R., Wang, H., and Zhou, C., Construction and Biocompatibility of Three-Dimensional Composite Polyurethane Scaffolds in Liquid Crystal State. ACS Biomaterials Science & Engineering, 2020. 6(4): p. 2312-2322.
    [28] Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P., and White, T. J., Voxelated liquid crystal elastomers. Science, 2015. 347(6225): p. 982-984.
    [29] Guin, T., Settle, M. J., Kowalski, B. A., Auguste, A. D., Beblo, R. V., Reich, G. W., and White, T. J., Layered liquid crystal elastomer actuators. Nature communications, 2018. 9(1): p. 1-7.
    [30] Kotikian, A., Truby, R. L., Boley, J. W., White, T. J., and Lewis, J. A., 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Advanced materials, 2018. 30(10): p. 1706164.
    [31] Tseng, L. F., Mather, P. T., and Henderson, J. H., Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology. Acta biomaterialia, 2013. 9(11): p. 8790-8801.
    [32] Nakayama, M., Lim, W. Q., Kajiyama, S., Kumamoto, A., Ikuhara, Y., Kato, T., and Zhao, Y., Liquid-crystalline hydroxyapatite/polymer nanorod hybrids: potential bioplatform for photodynamic therapy and cellular scaffolds. ACS applied materials & interfaces, 2019. 11(19): p. 17759-17765.
    [33] Takaza, M., Moerman, K. M., Gindre, J., Lyons, G., and Simms, C. K., The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. Journal of the mechanical behavior of biomedical materials, 2013. 17: p. 209-220.
    [34] Cretoiu, D., Pavelescu, L., Duica, F., Radu, M., Suciu, N., and Cretoiu, S. M., Myofibers. Muscle Atrophy, 2018: p. 23-46.
    [35] Wang, L., Fan, D., Chen, W., and Terentjev, E. M., Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Scientific reports, 2015. 5(1): p. 1-11.

    無法下載圖示 校內:2027-07-04公開
    校外:2027-07-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE