| 研究生: |
譚凱霖 Tam, Hoi-Lam |
|---|---|
| 論文名稱: |
CDCP1 促進尿路上皮癌中巨噬細胞的聚集及分化作用 CDCP1 promotes the recruitment and polarization of macrophage in urothelial carcinoma cell |
| 指導教授: |
黃暉升
Huang, Hui-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 尿路上皮癌 、腫瘤微環境 、腫瘤相關巨噬細胞 |
| 外文關鍵詞: | Urothelial carcinoma, Tumor microenvironment, M2 macrophages, CUB domain-containing protein 1, Plasminogen activator inhibitor-1 |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
尿路上皮癌(UC)是指腫瘤發生在泌尿系統的癌症,在臨床上大於90%的膀胱癌是
屬於尿路上皮癌。根據2022 年的統計,UC 的發生率為男性第4 名,而死亡率為
男性第8 名。化學療法可用於治療高度分化的UC,gemcitabine 和cisplatin 為常
見用於治療UC 的化療藥物。化學治療在臨床上的前期反應良好,能有效殺死癌
細胞。可是治療後復發機率高,容易產生抗藥性。近年來,有更多研究證實腫瘤
微環境(TME)與癌症發展和抗藥性有關。當中腫瘤相關巨噬細胞(TAM)為TME 中
主要一員。TAM 可分為與促進發炎和抗腫瘤生成的M1 型巨噬細胞;以及與抗發
炎和促進腫瘤生成的M2 型巨噬細胞。在我們近期的研究發現, CDCP1 的表現
量與UC 臨床分期及gemcitabine 抗藥性有相關性。也有文獻指出癌症組織會表現
較多M2 巨噬細胞,因此我們想要進一步探討CDCP1 與TAM 的關係。利用細胞
實驗我們驗證CDCP1 在T24 細胞高度表現時會促進單核球聚集和促進巨噬細胞
的分化作用,所分化的巨噬細胞也會增加抗發炎因子IL-1Ra 與CCL17 的表現量。
相反,當CDCP1 於T24 細胞剔除後,與其條件培養後M2 巨噬細胞的分化程度下
降並會增強促發炎因子IL-6 和CCL5 的表現量。此外,我們在CDCP1 過度表現
的細胞培養基中發現有高量的PAI-1。過往有相關研究指出PAI-1 會促進肺癌中單
核球聚集及巨噬細胞的分化作用。為了探討PAI-1 與巨噬細胞間的相互作用,我
們利用knockdown 的方式在T24-CDCP1 細胞中減少PAI-1 的表現,再與巨噬細
胞共同培養,結果發現M2 巨噬細胞、抗發炎因子IL-1Ra 和CCL17 的表現量有
所下降。此外促發炎因子IL-6 和CCL5 的表現量有所上升。綜合以上結果,我們
推測CDCP1 與PAI-1 在TME 及UC 癌症進展中參與非常重要的角色。並且在未
來會以更多實驗證實CDCP1/PAI-1 分化巨噬細胞對UC 癌症進展的貢獻。希望能
夠找出於臨床上治療UC 及解決化療藥物產生抗藥性的策略。
Urothelial carcinoma (UC) has been reported as the 4th and 8th in incident and mortality rate respectively. Chemotherapy, such as cisplatin and gemcitabine treatment, was used for the UC patient with advanced stage. Although the efficiency of chemotherapy is responsive, but there is high recurrence rate in patient after therapy. Recently, tumor microenvironment (TME) has been indicated to be an important role in cancer progression and chemoresistance. Macrophage is one of the critic factor in TME and worth noting it. The M1 macrophages participate in pro-inflammatory and anti-cancer response, however, the M2 macrophages possess anti-inflammation and pro-cancer development properties. Previously, we demonstrated that CUB domain binding protein1 (CDCP1) had high correlation with clinical stage and gemcitabine-resistance of UC. Also, more evidence indicated that M2 macrophages showed a high expression in cancer tissue. Thus, we further proceeded to elucidate the relationship between CDCP1 and tumor-associated macrophages (TAMs) in TME. Our in vitro experiments suggested that CDCP1-overexpressed T24 cells promoted macrophages recruitment and differentiation to TAMs. To elucidate whether TAMs affect UC progression, higher expression of anti-inflammatory cytokines IL-1Ra and CCL17 expression were found in CDCP1-CM differentiated macrophages. Conversely, pro-inflammatory cytokines IL-6 and CCL5 expression were found in CDKO-CM differentiated macrophages. In addition, the plasminogen activator inhibitor-1 (PAI-1) was detected in CDCP-1 overexpression cell’s CM. It has been reported that PAI-1 could promote recruitment and differentiation to macrophages in lung cancer. In order to investigate the crosstalk between PAI-1 and macrophages, PAI-1-silencing cells were generated and cultured with macrophages. The result suggested that PAI-1 silencing in UC cells may down-regulated M2 macrophage differentiation and anti-inflammatory cytokines IL-1Ra and CCL17 expression. As noted above, we speculate CDCP1/PAI-1 has a critical role in TME and cancer progression of UC. In the future, more functional experiments to verify the interaction between CDCP1/PAI-1 and TAMs as well as the modulation of chemoresistant in UC will be further investigated.
1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. J. C. a. c. j. f. c. (2022) Cancer statistics, 2022, CA: A Cancer Journal for Clinicians.
2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. J. C. a. c. j. f. c. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians. 71, 209-249.
3. Rouprêt, M., Babjuk, M., Burger, M., Capoun, O., Cohen, D., Compérat, E. M., Cowan, N. C., Dominguez-Escrig, J. L., Gontero, P. & Mostafid, A. H. J. E. u. (2021) European Association of Urology guidelines on upper urinary tract urothelial carcinoma: 2020 update. 79, 62-79.
4. Cowan, N. C., Turney, B. W., Taylor, N. J., McCarthy, C. L. & Crew, J. P. J. B. i. (2007) Multidetector computed tomography urography for diagnosing upper urinary tract urothelial tumour, BJU International. 99, 1363-1370.
5. Soria, F., Shariat, S. F., Lerner, S. P., Fritsche, H.-M., Rink, M., Kassouf, W., Spiess, P. E., Lotan, Y., Ye, D. & Fernández, M. I. J. W. j. o. u. (2017) Epidemiology, diagnosis, preoperative evaluation and prognostic assessment of upper-tract urothelial carcinoma (UTUC), World Journal of Urology. 35, 379-387.
6. Witjes, J. A., Bruins, H. M., Cathomas, R., Compérat, E. M., Cowan, N. C., Gakis, G., Hernández, V., Espinós, E. L., Lorch, A. & Neuzillet, Y. J. E. u. (2021) European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines, European urology. 79, 82-104.
7. Wu, Z., Li, S. & Zhu, X. J. F. i. I. (2021) The mechanism of stimulating and mobilizing the immune system enhancing the anti-tumor immunity, Frontiers in Immunology. 12, 2243.
8. Hinshaw, D. C. & Shevde, L. A. J. C. r. (2019) The tumor microenvironment innately modulates cancer progression, Cancer Research. 79, 4557-4566.
9. Lei, X., Lei, Y., Li, J.-K., Du, W.-X., Li, R.-G., Yang, J., Li, J., Li, F. & Tan, H.-B. J. C. l. (2020) Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy, Cancer Letters. 470, 126-133.
10. Hanahan, D. & Coussens, L. M. J. C. c. (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell 21, 309-322.
11. Safarzadeh, E., Orangi, M., Mohammadi, H., Babaie, F. & Baradaran, B. J. J. o. c. p. (2018) Myeloid‐derived suppressor cells: important contributors to tumor progression and metastasis, Journal of Cellular Physiology. 233, 3024-3036.
12. Quail, D. F. & Joyce, J. A. J. N. m. (2013) Microenvironmental regulation of tumor progression and metastasis, Nature Medicine. 19, 1423-1437.
13. Binnewies, M., Roberts, E. W., Kersten, K., Chan, V., Fearon, D. F., Merad, M., Coussens, L. M., Gabrilovich, D. I., Ostrand-Rosenberg, S. & Hedrick, C. C. J. N. m. (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy, Nature Medicine. 24, 541-550.
14. Mahoney, K. M., Rennert, P. D. & Freeman, G. J. J. N. r. D. d. (2015) Combination cancer immunotherapy and new immunomodulatory targets, Nature Reviews Drug Discovery. 14, 561-584.
15. Galon, J. & Bruni, D. J. N. r. D. d. (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies, Nature Reviews Drug Discovery. 18, 197-218.
16. Junttila, M. R. & De Sauvage, F. J. J. N. (2013) Influence of tumour micro-environment heterogeneity on therapeutic response, Nature. 501, 346-354.
17. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. J. N. i. (2013) Tissue-resident macrophages, Nature Immunology. 14, 986-995.
18. Tseng, D., Volkmer, J.-P., Willingham, S. B., Contreras-Trujillo, H., Fathman, J. W., Fernhoff, N. B., Seita, J., Inlay, M. A., Weiskopf, K. & Miyanishi, M. J. P. o. t. N. A. o. S. (2013) Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response, The Proceedings of the National Academy of Sciences. 110, 11103-11108.
19. Chen, H., Shi, R., Luo, B., Yang, X., Qiu, L., Xiong, J., Jiang, M., Liu, Y., Zhang, Z., Wu, Y. J. C. d. & disease (2015) Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice, Cell Death and Disease. 6, e1597-e1597.
20. Pathria, P., Louis, T. L. & Varner, J. A. J. T. i. i. (2019) Targeting tumor-associated macrophages in cancer, Trends in Immunology. 40, 310-327.
21. Yang, L., Zhang, Y. J. J. o. h. & oncology (2017) Tumor-associated macrophages: from basic research to clinical application, Journal of Hematology and Oncology. 10, 1-12.
22. Sica, A. & Mantovani, A. J. T. J. o. c. i. (2012) Macrophage plasticity and polarization: in vivo veritas, The Journal of Clinical Investigation. 122, 787-795.
23. Ivashkiv, L. B. J. T. i. i. (2013) Epigenetic regulation of macrophage polarization and function, Trends in Immunology. 34, 216-223.
24. Savagner, P. J. A. o. o. (2010) The epithelial–mesenchymal transition (EMT) phenomenon, Annals of Oncology. 21, vii89-vii92.
25. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. J. N. r. C. o. (2017) Tumour-associated macrophages as treatment targets in oncology, Nature Reviews Clinical Oncology. 14, 399-416.
26. Zhang, H., Li, R., Cao, Y., Gu, Y., Lin, C., Liu, X., Lv, K., He, X., Fang, H. & Jin, K. J. A. o. s. (2021) Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-producing macrophages enriched gastric cancer patients, Annals of Surgery.
27. Zhang, W.-j., Wang, X.-h., Gao, S.-t., Chen, C., Xu, X.-y., Zhou, Z.-h., Wu, G.-z., Yu, Q., Xu, G. & Yao, Y.-Z. J. J. o. S. R. (2018) Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients, Journal of Surgical Research. 222, 93-101.
28. Bhatt, A. S., Erdjument-Bromage, H., Tempst, P., Craik, C. S. & Moasser, M. M. J. O. (2005) Adhesion signaling by a novel mitotic substrate of src kinases, Oncogene. 24, 5333-5343.
29. Hooper, J. D., Zijlstra, A., Aimes, R. T., Liang, H., Claassen, G. F., Tarin, D., Testa, J. E. & Quigley, J. P. J. O. (2003) Subtractive immunization using highly metastatic human tumor cells identifies SIMA135/CDCP1, a 135 kDa cell surface phosphorylated glycoprotein antigen, Oncogene. 22, 1783-1794.
30. Wong, C. H., Baehner, F. L., Spassov, D. S., Ahuja, D., Wang, D., Hann, B., Blair, J., Shokat, K., Welm, A. L. & Moasser, M. M. J. C. C. R. (2009) Phosphorylation of the SRC epithelial substrate Trask is tightly regulated in normal epithelia but widespread in many human epithelial cancers, Clinical Cancer Research. 15, 2311-2322.
31. Cui, Y.-H., Kim, H., Lee, M., Yi, J. M., Kim, R.-K., Uddin, N., Yoo, K.-C., Kang, J. H., Choi, M.-Y. & Cha, H.-J. J. O. (2018) FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation, Oncogene. 37, 5794-5809.
32. He, Y., Wu, A., Harrington, B., Davies, C., Wallace, S., Adams, M., Palmer, J., Roche, D., Hollier, B. & Westbrook, T. J. O. (2016) Elevated CDCP1 predicts poor patient outcome and mediates ovarian clear cell carcinoma by promoting tumor spheroid formation, cell migration and chemoresistance, Oncogene. 35, 468-478.
33. Casar, B., Rimann, I., Kato, H., Shattil, S., Quigley, J. & Deryugina, E. J. O. (2014) In vivo cleaved CDCP1 promotes early tumor dissemination via complexing with activated β1 integrin and induction of FAK/PI3K/Akt motility signaling, Oncogene. 33, 255-268.
34. Forte, L., Turdo, F., Ghirelli, C., Aiello, P., Casalini, P., Iorio, M. V., D’Ippolito, E., Gasparini, P., Agresti, R. & Belmonte, B. J. B. c. (2018) The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer, BMC Cancer. 18, 1-11.
35. Turdo, F., Bianchi, F., Gasparini, P., Sandri, M., Sasso, M., De Cecco, L., Forte, L., Casalini, P., Aiello, P. & Sfondrini, L. J. O. (2016) CDCP1 is a novel marker of the most aggressive human triple-negative breast cancers, CA: A Cancer Journal for Clinicians. 7, 69649.
36. Gao, W., Chen, L., Ma, Z., Du, Z., Zhao, Z., Hu, Z. & Li, Q. J. G. (2013) Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential, Gastroenterology 145, 636-646. e5.
37. Razorenova, O. V., Finger, E. C., Colavitti, R., Chernikova, S. B., Boiko, A. D., Chan, C. K., Krieg, A., Bedogni, B., LaGory, E. & Weissman, I. L. J. P. o. t. N. A. o. S. (2011) VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKCδ-driven migration, The Proceedings of the National Academy of Sciences. 108, 1931-1936.
38. Karachaliou, N., Chaib, I., Cardona, A. F., Berenguer, J., Bracht, J. W. P., Yang, J., Cai, X., Wang, Z., Hu, C. & Drozdowskyj, A. J. E. (2018) Common co-activation of AXL and CDCP1 in EGFR-mutation-positive non-small cell lung cancer associated with poor prognosis, EBioMedicine. 29, 112-127.
39. Dong, Y., He, Y., de Boer, L., Stack, M. S., Lumley, J. W., Clements, J. A. & Hooper, J. D. J. J. o. B. C. (2012) The cell surface glycoprotein CUB domain-containing protein 1 (CDCP1) contributes to epidermal growth factor receptor-mediated cell migration, The Journal of Biological Chemistry. 287, 9792-9803.
40. Miyazawa, Y., Uekita, T., Hiraoka, N., Fujii, S., Kosuge, T., Kanai, Y., Nojima, Y. & Sakai, R. J. C. R. (2010) CUB domain–containing protein 1, a prognostic factor for human pancreatic cancers, promotes cell migration and extracellular matrix degradation, Cancer Research. 70, 5136-5146.
41. He, Y., Wortmann, A., Burke, L. J., Reid, J. C., Adams, M. N., Abdul-Jabbar, I., Quigley, J. P., Leduc, R., Kirchhofer, D. & Hooper, J. D. J. J. o. B. C. (2010) Proteolysis-induced N-terminal ectodomain shedding of the integral membrane glycoprotein CUB domain-containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its C-terminal domain and recruitment of Src and PKCδ, British Journal of Cancer. 285, 26162-26173.
42. Lin, C.-Y., Chen, H.-J., Huang, C.-C., Lai, L.-C., Lu, T.-P., Tseng, G.-C., Kuo, T.-T., Kuok, Q.-Y., Hsu, J. L. & Sung, S.-Y. J. C. r. (2014) ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway, Cancer Research. 74, 5229-5243.
43. Miura, S., Hamada, S., Masamune, A., Satoh, K. & Shimosegawa, T. J. E. c. r. (2014) CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells, Experimental Cell Research. 321, 209-218.
44. Kubala, M. H., DeClerck, Y. A. J. C. & Reviews, M. (2019) The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding, Cancer and Metastasis Reviews. 38, 483-492.
45. Dellas, C., Loskutoff, D. J. J. T. & haemostasis (2005) Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease, The Journal of Thrombosis and Haemostasis. 93, 631-640.
46. Mashiko, S., Kitatani, K., Toyoshima, M., Ichimura, A., Dan, T., Usui, T., Ishibashi, M., Shigeta, S., Nagase, S., Miyata, T. J. C. b. & therapy (2015) Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer, Cancer Biology and Therapy. 16, 253-260.
47. Hirahata, M., Osaki, M., Kanda, Y., Sugimoto, Y., Yoshioka, Y., Kosaka, N., Takeshita, F., Fujiwara, T., Kawai, A. & Ito, H. J. C. m. (2016) PAI‐1, a target gene of miR‐143, regulates invasion and metastasis by upregulating MMP‐13 expression of human osteosarcoma, Cancer Medicine. 5, 892-902.
48. Pavón, M. A., Arroyo-Solera, I., Téllez-Gabriel, M., León, X., Virós, D., López, M., Gallardo, A., Céspedes, M. V., Casanova, I. & López-Pousa, A. J. O. (2015) Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients, Oncotarget 6, 29016.
49. Kubala, M. H., Punj, V., Placencio-Hickok, V. R., Fang, H., Fernandez, G. E., Sposto, R. & DeClerck, Y. A. J. C. r. (2018) Plasminogen activator inhibitor-1 promotes the recruitment and polarization of macrophages in cancer, Cell Reports. 25, 2177-2191. e7.
50. Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T. & Sahebkar, A. J. J. o. c. p. (2018) Macrophage plasticity, polarization, and function in health and disease, Journal of Cellular Physiology. 233, 6425-6440.
51. Weizman, N., Krelin, Y., Shabtay-Orbach, A., Amit, M., Binenbaum, Y., Wong, R. & Gil, Z. J. O. (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase, Oncogene. 33, 3812-3819.
52. Amit, M. & Gil, Z. J. O. (2013) Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase, Oncoimmunology 2, e27231.
53. Harrington, B. S., He, Y., Davies, C. M., Wallace, S. J., Adams, M. N., Beaven, E. A., Roche, D. K., Kennedy, C., Chetty, N. P. & Crandon, A. J. J. B. j. o. c. (2016) Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer, British Journal of Cancer. 114, 417-426.
54. Moroz, A., Wang, Y.-H., Sharib, J. M., Wei, J., Zhao, N., Huang, Y., Chen, Z., Martinko, A. J., Zhuo, J. & Lim, S. A. J. C. C. R. (2020) Theranostic targeting of CUB domain containing protein 1 (CDCP1) in pancreatic cancer, Clinical Cancer Research. 26, 3608-3615.
55. Harrington, B. S., He, Y., Khan, T., Puttick, S., Conroy, P. J., Kryza, T., Cuda, T., Sokolowski, K. A., Tse, B. W. & Robbins, K. K. J. T. (2020) Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer, Theranostics. 10, 2095.
校內:2025-09-01公開