簡易檢索 / 詳目顯示

研究生: 周汝崑
Chou, Ju-Kun
論文名稱: 運用深度學習技術預測美國十年期公債殖利率
Using deep learning techniques to predict 10 years U.S treasury yield
指導教授: 徐立群
Shu, Lih-Chyun
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所碩士在職專班
Graduate Institute of Finance (on the job class)
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 32
中文關鍵詞: 深度學習美國公債殖利率
外文關鍵詞: deep learning, yield of United States Treasury securities
相關次數: 點閱:142下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 美國公債殖利率可以作為預測景氣循環之重要指標,也是全球資本市場最重要的利率參考指標。本研究旨在探討深度學習技術應用於財務金融領域之預測效果,以不同年期之美國公債殖利率使用深度學習模型預測10年期美國公債殖利率。
    本研究蒐集1990年1月至2018年11月間各年期美國公債殖利率日資料,建立時間序列資料,透過資料預處理後建立長短期記憶模型(Long Short-Term Memory, LSTM),依據模型訓練結果預測10年期美國公債殖利率。
    本研究實證結果發現,在1個月期公債殖利率到30年期公債殖利率所有變數都加入訓練模型,並在資料長度為20,測試比率為0.2,每次處理128個資料,2層隱藏層,並將資料重複訓練10次,在學習率0.005時MSE為0.0063,最為準確。

    The yield to maturity of United States Treasury securities is a decisive indicator of the economic cycle in the United States, and it is also one of the most critical interest rate references for capital markets worldwide. This study investigates the effectiveness of applying deep learning methods in financial prediction. Specifically, a deep learning model is trained by using the yields of various United States Treasury securities of different maturities to predict the 10-year yield.

    This study establishes time series data from the daily yields of United States Treasury securities from January 1990 to November 2018, which are subsequently preprocessed for the establishment of a long short-term memory model. The model’s training results are used for the prediction of the 10-year yield.

    The empirical results of this study indicate that the model is at its most accurate under the following conditions: the yields of securities with maturities that range from 1 month to 30 years are all included in the training model; data length is 20; test ratio is 0.2; 128 data are processed per batch; the model has 2 hidden layers; the training is repeated 10 times; and mean-square error is 0.0063 at the learning rate of 0.005.

    摘要 I 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究架構 6 第二章 文獻回顧 7 第一節 利率的相關理論 7 第二節 利率的相關文獻 10 第三節 深度學習的相關文獻 12 第四節 深度學習模型 14 第三章 研究方法 20 第一節 研究樣本與資料來源 20 第二節 變數定義與衡量 20 第三節 深度學習模型 22 第四章實證結果與分析 23 第一節敘述性統計分析 23 第二節LSTM模型學習結果分析 27 第五章結論與建議 31 參考文獻 32 一、中文文獻 32 二、英文文獻 32

    翁嘉謙,2014,探討美國政府長短期債券利差於次貸風暴前後期間預測美國經濟成長之解釋性。
    陳建德,2014,美國十年期公債殖利率是否為景氣領先指標?。
    Ang,Andrew, Monika Piazzesi and Min Wei (2004) What Does the Yield Curve Tell Us about GDP Growth, Journal of Econometrics, 131, 359-403.

    Alex Graves et al. (2013) Speech recognition with deep recurrent neural networks , 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

    Chuah, K. L. (1992) A Nonlinear Approach to Return Predictability in the Securities Markets Using Feedforward Neural Network, Ph.D. dissertation, Washington State University.

    Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates.Econometrica,53, 385–407.

    Dai, Q., & Singleton, K. (2000). Specification analysis of affine term structure models. Journal of Finance,55, 1943–1978.

    Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics,130,337–364.

    Duddy, S. and Shekhar, S. (1988). Bond Rating: A Non-Conservative Application of Neural Networks, Proc. of the IEEE International Conference on Neural Networks, 443-450.

    Duffee , G. (2002). Term premia and interest rates forecasts in affine models. Journal of Finance,57, 405–443.

    G. E. Hinton, S. Osindero, Y. W Teh. (2006). A fast learning algorithm for deep belief nets. Neural computation , 18(7),1527-1554

    Ho, T. S. Y., & Lee, S.-B. (1986). Term structure movements and pricing interest rate contingent claims. Journal of Finance,41,1011–1029.

    J J Hopfield (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS. 79 (8) ,2554-2558

    Kamijo, K. and Tanigawa, T. (1990) Stock Price Pattern Recognition: A Recurrent Neural Network Approach, Proc. of the IJCNN, San Diego, Ca, 215-221.

    Kimoto, T., and Asakawa, K. (1990) Stock Market Prediction System with Modular Neural Networks, Proc. of the IJCNN, San Diego, Ca, 1-6.

    Kunihiko Fukushima (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics , 36(4), 193–202

    LeCum Y, Boser B , & Denker J S , et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation , 1(4),541-551

    McNown, R. and Wallace, M. S. (1992) Cointegration Tests of a Long-Run Relation between Money Demand and the Effective Exchange Rate, Journal of International Money & Finance 11, 107-114.

    MD Odom, R Sharda.(1990) A Neural Network Model for Bankruptcy Prediction. Proc. of the IJCNN, San Diego, Ca,.

    Mishkin, F.S (1988) The Information in the Term Structure : Some Future Results. Journal of Applied Econometrics, No.3 , 307-314.

    Nelson, C. R., & Siegel, A. (1987). Parsimonious modeling of yield curves. Journal of Business,60(4), 473–489.

    S Hochreiter, J Schmidhuber (1997) Long short-term memory. Neural Computation. 9(8), 1735-1780

    S Hochreiter et al. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

    Sim,ChristopherA. (1992) Interpreting the Macroeconomic Time series Facts : The Effects of Monetary Policy, European Economic review 36 , 975-1011.

    Siong Lin Ho et al. (2002) A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction, Computers & Industrial Engineering
    Volume 42, Issues 2–4, Pages 371-375

    T Mikolov et al. (2011) Extensions of recurrent neural network language model, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

    Wu Tao (2006) Globalization 's Effect on Interest Rates and the Yield Curve , Economic Letter – Insights from the Federal Reserve Bank of Dallas, 1(9).

    Yoshua Bengio (2009). Learning Deep Architectures for AI. Foundations and Trends in Machine Learning. 2(1),1-127

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE