簡易檢索 / 詳目顯示

研究生: 謝昀庭
Hsieh, Yun-Ting
論文名稱: 生醫材料316L不銹鋼與Ti6Al4V合金經氣體氮化以及濺鍍TiN後的磨耗性質、電化學性質和生物相容性之研究
The study of tribological property, electrochemical behavior and biocompatibility of plasma nitrided and deposited TiN on AISI 316L stainless steel and Ti6Al4V alloy
指導教授: 蘇演良
Su, Yen-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 132
中文關鍵詞: 316LTi6Al4V表面氮化氮化鈦磨潤生物相容性電化學
外文關鍵詞: nitriding, TiN, wear, corrosion, biocompatibility
相關次數: 點閱:107下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用非平衡磁控濺鍍法披覆氮化鈦(TiN)於AISI 316L和Ti6Al4V 以及氮化熱處理後的 AISI 316L 和 Ti6Al4V。實驗中有九種不同的下試件,316L系列中五種分別為 316L(316)、離子氮化後的316L(N316)與披覆氮化鈦於前兩者(TiN-316、TiN-N316)、將離子氮化N316降低粗糙度至原材再披覆氮化鈦(TiN-N316s);Ti6Al4V系列四種分別為Ti6Al4V、經高溫氮化處理後的Ti6Al4V(N-Ti6Al4V)以及將前兩者披覆氮化鈦(TiN-Ti6Al4V、TiN-N-Ti6Al4V)。分析所有試片之微結構、機械性質,並以往復式磨耗試驗機在0.9 wt.% NaCl溶液中進行磨耗試驗,使用316L球、Ti6Al4V球與Si3N4球三種上試件,研究其磨潤特性與磨耗機構;電化學分析評估各種試片之抗腐蝕能力;培養Raw264.7小鼠單核巨噬細胞於所有試片上,探討生物相容性。
    表面氮化與被覆上TiN膜能夠提升抗磨耗性質、抗腐蝕性與生物相容性。在316L系列中由TiN-N316s擁有最佳抗磨耗性與抗腐蝕性。在Ti6Al4V系列中TiN-N-Ti6Al4V擁有最佳之抗磨耗性, Ti6Al4V系列皆表現優異抗腐性。鍍上TiN膜之試片皆表現出良好的生物相容性。

    The nitriding treatment and TiN coatings are used for the AISI 316L stainless steel and Ti6Al4V alloy. The low temperature plasma nitriding (390°C) was applied to AISI 316L stainless steel; The high temperature nitriding(900°C) was applied to Ti6Al4V alloy. TiN coatings were prepared on unnitrided samples and nitrided samples by Closed Field Unbalanced Magnetron Sputtering (CFUMBS). The microstructure, adhesion and hardness of the TiN coatings are examined using X-ray diffraction, scratch tester and nanoindenter, respectively. The wear tests were performed by SRV tester in 0.9% NaCl solution at load of 10N for 24 min as sliding 316L, Si3N4 and Ti6Al4V balls. The corrosion resistance of all samples was evaluated by potentiodynamic polarization test. The Purified mouse leukaemic monocyte macrophage cells (Raw 264.7) are seeded on the samples for 24h, 72h and 120h to investigate the biocompatibility. The result shows the duplex surface treatment significantly improved the wear, corrosion resistance and biocompatibility.

    總目錄 摘要 I The study of tribological property,electrochemical behavior and biocompatibility of plasma nitrided and deposited TiN on AISI 316L stainless steel and Ti6Al4V alloy II 致謝 XIII 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1前言 1 第二章 理論基礎與文獻回顧 3 2-1金屬表面氮化處理 3 2-1-1 氣體氮化原理 3 2-2 氮化鈦基本性質 3 2-3磨耗機構原理 4 2-4 電化學腐蝕原理 6 2-5 生物相容性 7 2-6文獻回顧 9 第三章 實驗方法與步驟 13 3-1 研究目的 13 3-2 實驗流程 13 3-3 表面氮化處理及參數 14 3-4 鍍膜製作 14 3-4-1 濺鍍參數與鍍層安排 14 3-4-2 濺鍍系統與靶材配置 15 3-5 實驗方法 15 3-5-1 氮化層、氮化鈦(TiN)鍍膜之微結構分析 15 3-5-2 氮化層、鍍膜成分與元素分佈分析 16 3-5-3 硬度實驗 16 3-5-4附著性實驗 17 3-5-5磨耗實驗 18 3-5-6接觸角量測實驗 18 3-5-7電化學腐蝕實驗 19 3-5-8生物相容性實驗 20 3-6 實驗設備 21 第四章 實驗結果與討論 24 4-1 氮化層、氮化鈦(TiN)基本性質 24 4-1-1氮化層、氮化鈦(TiN)結構分析 24 4-1-2硬度量測試驗 26 4-1-3 氮化鈦膜附著性分析 27 4-1-4接觸角分析 28 4-2 磨潤性質 29 4-3 磨耗機制探討 35 4-3-1 316L系列對磨316L球磨耗機制討論 35 4-3-2 316L系列對磨Si3N4球磨耗機制討論 38 4-3-3 316L系列對磨Ti6Al4V球磨耗機制討論 40 4-3-4 Ti6Al4V系列對磨316L球磨耗機制討論 43 4-3-5 Ti6Al4V系列對磨Si3N4球磨耗機制討論 45 4-3-6 Ti6Al4V系列對磨Ti6Al4V球磨耗機制討論 47 4-3-7 赫茲接觸應力的影響 49 4-4電化學腐蝕實驗結果 50 4-5生物相容性實驗結果 52 4-5-1 試片表面細胞生長型態 52 4-5-2細胞生長數量統計 53 第五章 結論 56 參考文獻 59  

    參考文獻
    1. 國際骨質疏鬆症基金會(International Osteoporosis Foundation)12 December,2013,(http://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional%20Audits/2013-Asia_Pacific_Audit-Chinese_Taipei_0_0.pdf).
    2. 行政院衛生署統計公布欄,門診主要疾病就診率統計(http://www.doh.gov.tw/CHT2006/DM/DM1_2.aspx?class_no=440&level_no=1) 28 October, 2011.
    3. YH Zhu, KY Chiu and WM Tang, Department of Orthopaedic Surgery, The University of Hong Kong, Hong Kong , “Review Article: Polyethylene wear and osteolysis in total hip arthroplasty”, Journal of Orthopaedic Surgery, 9(2001) 91-99.
    4. A. Unswotih, “Recent developments in the tribology of artificial joints”, Tribology International, 28 (1995) 485-495.
    5. D. Dowson, “A comparative study of the performance of metallic and ceramic femoral head components in total replacement hip joints”, Wear, 190 (1995) 171-183.
    6. Bizot P, Banallec L, Sedel L, Nizard R, “Alumina-on-alumina total hip prostheses in patients 40 years of age or younger”, Clin Orthop, 379 (2000) 68-76.
    7. P. Boyera, D. Hutenb, P. Loriauta, V. Lestrat a, C. Jeanrota, P. Massina, “Is alumina-on-alumina ceramic bearings total hip replacement the right choice in patients younger than 50 years of age? A 7- to 15-year follow-up study”, Orthopaedics & Traumatology: Surgery & Research, 96(2010) 616-622.
    8. D.Q. Peng, T.H. Kim, J.H. Chung, J.K. Park, “Development of nitride-layer of AISI 304 austenitic stainless steel during high-temperature ammonia gas-nitriding”, Applied Surface Science, 256(2010) 7522-7529.
    9. Hideaki Shibata, Keiro Tokaji, Takeshi Ogawa, Chiaki Hori, “The effect of gas nitriding on fatigue behaviour in titanium alloys”, International Journal of Fatigue, 16(1994) 370-376.
    10. S.K. Wu, H.C. Lin, C.Y. Lee. “Gas nitriding of an equiatomic TiNi shape-memory alloy: Part I: Nitriding parameters and microstructure characterization” Surface and Coatings Technology, 113(1999) 17-24.
    11. S. Novak, M. Komac, “Wear of cermet cutting tools coated with physically vapour deposited TiN”, Wear, 205 (1997) 160-168
    12. Jae-Young HEO, Sung-Hak CHO, Tae-Jin JE, Kwang-Ho KIM, Hyung-Woo LEE, Myung-Chang KANG,“Effects of honing treatment on AIP-TiN and TiAlN coated end-mill for high speed machining”, Trans. Nonferrous Met. Soc. China, 21(2011) s83-s87.
    13. H.-R. Stock, M. Diesselberg, H.-W. Zoch, “Investigation of magnetron sputtered titanium–nickel–nitride thin films for use as mould coatings”, Surface & Coatings Technology, 203 (2008) 717–720.
    14. Gregory John Gibbons, Robert George Hansell, “Thermal-sprayed coatings on aluminium for mould tool protection and upgrade”, journal of materials processing technology, 204 (2008) 184–191.
    15. Jun Zuo, Youneng Xie, Jie Zhang, QiupingWei, BoZhoua, Jiaqi Luo, YijiaWang, Z.M.Yu, Z.G. Tang, “ TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance”, Surface & Coatings Technology, 277 (2015) 227–233.
    16. Ilven Mutlu, “ Sinter-coating method for the production of TiN-coated titanium foam for biomedical implant applications”, Surface & Coatings Technology, 232 (2013) 396–402.
    17. C.L. Liu, Paul K. Chu a, G.Q. Lin b, M. Qi, “Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents”, Surface & Coatings Technology, 201 (2006) 2802–2806.
    18. K.G, Budinski, “Surface Engineering for Wear Resistance.” Prentice Hall, New Jersey.
    19. Hamid Reza Asgari Bidhendi, Majid Pouranvari, “Corrsion Study Of Metallic Biomaterials In Simulated Body Fluid”, Metalurgija-MJoM, 17(2011) 13-22.
    20. M.A. Khan, R.L. Williams, D.F. Williams, “Conjoint corrosion and wear in titanium alloys”, Biomaterials, 20 (1999) 765-772.
    21. Daryl L. Roll, P.E. “Passivation and the Passive Layer”, (2010) 1-8.
    22. 美國食品藥物管理局網FDA,“Safety Communication: Metal-on-Metal hip implants,(http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm335775.htm) 2013/01/17.
    23. A. Bloyce, P.-Y. Qi, H. Dong, T. Bell, “Surface modification of titanium alloys for combined improvements in corrosion and wear resistance”, Surface and Coatings Technology, 107 (1998) 125–132.
    24. I. Gurappa, “Characterization of different materials for corrosion resistance under simulated body fluid conditions”, Materials Characterization, 49 (2002) 73– 79.
    25. Abdullah Shahryari, Sasha Omanovic, Jerzy A. Szpunar, “Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface”, Materials Science and Engineering C, 28 (2008) 94–106.
    26. V. Muthukumaran, V. Selladurai, S. Nandhakumar, M. Senthilkumar, “Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel”, Materials and Design, 31(2010) 2813–2817.
    27. A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, “Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment time”, Surface & Coatings Technology, 200(2006) 3511 – 3517.
    28. B. Hashemi, M. Rezaee Yazdi, V. Azar, “The wear and corrosion resistance of shot peened–nitrided 316L austenitic stainless steel”, Materials and Design, 32(2011) 3287–3292.
    29. Morten S. Jellesen, Thomas L. Christiansen, “Lisbeth Rischel Hilbert, Per Moller, “Erosion–corrosion and corrosion properties of DLC coated low temperature gas-nitrided austenitic stainless steel”, Wear , 267(2009) 1709–1714.
    30. 楊宗瑋,“生醫級Ti6Al4V合金與316L不銹鋼經表面處理後的電化學反應、生物相容性和磨耗性質之研究”,(2013),圖4-66(p136)。
    31. D. Nolan a, S.W. Huang, V. Leskovsek, S. Braun, “Sliding wear of titanium nitride thin films deposited on Ti–6Al–4V alloy by PVD and plasma nitriding processes”, Surface & Coatings Technology, 200 (2006) 5698–5705.
    32. Bruce R. Lanning, Ronghua Wei, “High intensity plasma ion nitriding of orthopedic materials Part II. Microstructural analysis”, Surface & Coatings Technology, 186 (2004) 314– 319.
    33. V. Fouquet, L. Pichon1, M. Drouet, A. Straboni, “Plasma assisted nitridation of Ti-6Al-4V”, Applied Surface Science 221 (2004) 248–258.
    34. Heajeong Lee, Heejae Kang, Jungmin Kim, Han-Kyun Shin, Junghwan Lee, Seok-Hwan Huh, Janghyun Sung b, Hyo-Jong Lee, “Inward diffusion of Al and Ti3Al compound formation in the Ti–6Al–4V alloy during high temperature gas nitriding”, Surface & Coatings Technology, 240 (2014) 221–225.
    35. M.P. Gispert, A.P. Serro, R. Colac¸o, E. Pires, B. Saramago, “Wear of ceramic coated metal-on-metal bearings used for hip replacement”, Wear, 263 (2007) 1060–1065.
    36. C.H. Hsu, K.H. Huang, M.R. Lin, “Annealing effect on tribological property of arc-deposited TiN film on 316L austenitic stainless steel”, Surface & Coatings Technology, 259 (2014) 167–171.
    37. Yan Wang, Derek O. Northwood , “An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells”, Journal of Power Sources, 165 (2007) 293–298.
    38. Liu Chenglong, Yang Dazhi, Lin Guoqiang, Qi Min, “Corrosion resistance and hemocompatibility of multilayered Ti/TiN-coated surgical AISI 316L stainless steel”, Materials Letters, 59(2005) 3813 – 3819.
    39. W.-S. Jeon, J.-G. Kim, Y.-J. Kim, J.-G. Han, “Electrochemical properties of TiN coatings on 316L stainless steel separator for polymer electrolyte membrane fuel cell”, Thin Solid Films, 516(2008) 3669–3672.
    40. C. Liua, Q. Bi, A. Matthews, “Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti–6Al–4V artificial hip joints”, Surface and Coatings Technology, 163 –164 (2003) 597–604.
    41. L. Escalada, J. Lutz, S.P. Brühl, M. Fazio, A. Márquez, S. Mändl, D. Manova, S.N. Simison, “Microstructure and corrosion behavior of AISI 316L duplex treated by means of ion nitriding and plasma based ion implantation and deposition”, Surface & Coatings Technology, 223 (2013) 41–46.
    42. E. De Las Heras, D.A. Egidi, P. Corengia, D. González-Santamaría, A. García-Luis, M. Brizuela, G.A. López, M. Flores Martinez, “Duplex surface treatment of an AISI 316L stainless steel; microstructure and tribological behavior, Surface & Coatings Technology”, 202 (2008) 2945–2954.
    43. A. Wisbey, P.J. Gregson, M. Tuke, “Application of PVD TiN coating to Co-Cr-MO based surgical implants”, Biomaterials, 8 (1987) 477-480.
    44. Shi Jin, Yang Zhang, Qiang Wang, Dan Zhang, Song Zhang, “Influence of TiN coating on the biocompatibility of medical NiTi alloy”, Colloids and Surfaces B: Biointerfaces, 101 (2013) 343– 349.
    45. T. Arai, H. Fujita, M. Watanabe, “Evaluation of adhesion strength of thin hard coatings.” Thin Solid Films, Vol.154 (1987) 387-401.
    46. Masao Kamiya, Hideto Tanoue , Hirofumi Takikawa , Makoto Taki ,Yushi Hasegawa , Masao Kumagai, “Preparation of various DLC films by T-shaped filtered arc deposition and the effect of heat treatment on film properties”, Vacuum 83 (2009) 510-514.
    47. 張凱翔,“生醫材料316L不銹鋼經氣體氮化以及濺鍍Ti-C:H後的磨耗性質、電化學性質和生物相容性之研究”,(2015), p24。
    48. H. Yoshida, A. Faust, J. Wilckens, M. Kitagawa, J. Fetto, Edmund Y.-S. Chao, “Three-dimensional dynamic hip contact area and pressuredistribution during activities of daily living”, Journal of Biomechanics ,39 (2006) 1996–2004.
    49. W. W. Park, E. K. Kim, J. H. Jeon, J. Y. Choi, S. W. Moon,S. H. Lim, S. H. Han,∗ “Wear of UHMWPE against nitrogen-ion-implanted and NbN-coated Co–Cr–Mo alloy formed by plasma immersion ion implantation and deposition for artificial joints”, Applied Surface Science ,258 (2012) 8228– 8233.
    50. H. Dong, S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys, Int. Mater. Rev. 55 (2010) 65–98.
    51. T. Christiansen, M.A.J. Somers, Low temperature gaseous nitriding and carburising of stainless steel, Surf. Eng. 21 (2005) 445–455.
    52. Y. Sun, X.Y. Li, T. Bell, X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels, J. Mater. Sci. 34 (1999) 4793–4802.
    53. J. Baranowska, B. Arnold, Corrosion resistance of nitrided layers on austenitic steel, Surf. Coat. Technol. 200 (2006) 6623–6628.
    54. J. P. Celis, D. Drees, E. Maesen and J. R. Roos, Quantitative determination of through-coating porosity in thin ceramic physically vapour-deposited coatings, Thhz Solid Films, 224 (1993) 58-62.
    55. I. Milogev and B. Navingek, A corrosion study of TiN (physical vapour deposition) hard coatings deposited on various substrates, Surface and Coatings Technology, 63 (1994) 173-180.
    56. J. Piippo, B. Elsener and H. Böhni, Electrochemical characterization of TiN coatings, Surface and Coatings Technology, 61(1993) 43-46.
    57. C.Wei, W. J. Pan, M. S. Hung , “The effects of substrate roughness and associated surface properties on the biocompatibility of diamond-like carbon films”Surface & Coatings Technology,224 (2013) 8–17.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE