| 研究生: |
呂紹榮 Lu, Shao-Jung |
|---|---|
| 論文名稱: |
載子傳輸層對鈣鈦礦太陽能電池效能影響之研究 Influences of the Carrier Transport Layer on the Performances of Perovskite Solar Cell |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 |
| 外文關鍵詞: | perovskite solar cell |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高可見光吸收之甲基胺鉛碘鈣鈦礦材料當作吸光層,並搭配二氧化錫電子傳輸層薄膜,組裝甲基胺鉛碘鈣鈦礦太陽能電池。探討二氧化錫薄膜厚度、鈣鈦礦前驅液濃度、溶液加工法時間參數,對電池效能之影響。並比較以二氧化錫與二氧化鈦薄膜分別作電子傳輸層時,對鈣鈦礦太陽電池之電子傳輸層時之光伏效能影響。使用二氧化錫當作電子傳輸層所組裝之鈣鈦礦太陽能電池,經最佳化後,其開路電壓~0.96 V、短路電流~25.6 mA/cm2、填充因子0.56, 效率可達13.8 %。相較於二氧化鈦所組裝之鈣鈦礦太陽能電池,電流密度約有10 %的提升。另外藉 由時間解析螢光光譜分析鈣鈦礦層-電子傳輸層之激子生命週期,分析二氧化錫與二氧化鈦之電子傳輸層與鈣鈦礦間的載子分離效果,顯示二氧化錫有較佳的載子收集效能。本研究亦以價格較低的碘化銅嘗試取代高價的Spiro-OMeTAD當作電洞傳輸層,來組裝成甲基胺鉛碘鈣鈦礦太陽能電池。然而,由於使用旋轉塗佈法製備的碘化銅薄膜無法形成平坦且連續的薄膜,導致其元件嚴重漏電以及嚴重的載子再結合,使得整體效能大幅下降。
TiO2 has been widely used as electron transport layer for the fabrication of perovskite solar cells. Because of the mismatch of conduction band edge of the TiO2 and CH3NH3PbI3, in this work, we used SnO2 as the electron transport layer in the perovskite solar cell. The perovskite solar cell was optimized in terms of the morphology of SnO2, the toluene dropping time, and the concentration of perovskite precursor. The best photovoltaic parameters of SnO2 perovskite solar cell were characterized to be Voc~0.93 V, Jsc~23.6 mA/cm2, F.F.~0.63, and PCE~13.96 %. Furthermore, CuI was employed to be the hole transport layer in the perovskite solar cells in this work. However, the non-continuous CuI film, which was formed by spin coating method, resulted in large recombination and poor holes transport channel. The PCE was therefore dramatically decreased. By combining the Spiro-OMeTAD and CuI as the hole transport layer in perovskite solar cells, the best PCE~6 % was measured.
1. Jenny Nelson, The Physics of Solar Cells. 2003: Imperial College Press.
2. Charles Fritts, On a New Form of Selenium Photocell. American Journal of Science, 1883. 26: p. 465.
3. Daryl Chapin Gerald Pearson, Calvin Fuller, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5).
4. Seong Sik Shin, Eun Joo Yeom, Woon Seok Yang, Seyoon Hur, Min Gyu Kim, Jino Im, Jangwon Seo, Jun Hong Noh, Sang Il Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science, 2017.
5. NREL Efficiency Chart web. 2017.
6. Brian O'Regan, Michael Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
7. Kenjiro Teshima, Akihiro Kojima, Yasuo Shirai and Tsutomu Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 131: p. 6050–6051.
8. Nam-Gyu Park, Michael Grätzel, Tsutomu Miyasaka, Organic-Inorganic Halide Perovskite Photovoltaics. Springer: Cham, 2016.
9. Juan Pablo Correa Baena, Ludmilla Steier, Wolfgang Tress, Michael Saliba, Stefanie Neutzner, Taisuke Matsui, Fabrizio Giordano, T. Jesper Jacobsson, Ajay Ram Srimath Kandada, Shaik M. Zakeeruddin, Annamaria Petrozza, Antonio Abate, Mohammad Khaja Nazeeruddin, Michael Grätzel, Anders Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science, 2015. 8(10): p. 2928-2934.
10. Weijun Ke, Guojia Fang, Qin Liu, Liangbin Xiong, Pingli Qin, Hong Tao, Jing Wang, Hongwei Lei, Borui Li, Jiawei Wan, Guang Yang, Yanfa Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015. 137(21): p. 6730-6733.
11. Weijun Ke, Dewei Zhao, Alexander J. Cimaroli, Corey R. Grice, Pingli Qin, Qin Liu, Liangbin Xiong, Yanfa Yan, Guojia Fang, Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2015. 3(47): p. 24163-24168.
12. Pan-Pan Zhang, Zheng-Ji Zhou, Dong-Xing Kou, Si-Xin Wu, Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials. International Journal of Photoenergy, 2017. 2017: p. 10.
13. Rachel A. Segalman, Bryan McCulloch, Saar Kirmayer, Jeffrey J. Urban, Block Copolymers for Organic Optoelectronics. Macromolecules, 2009. 42(23): p. 9205-9216.
14. https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/.
15. Shiqiang Luo, Walid A. Daoud, Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 2015. 3(17): p. 8992-9010.
16. Sang Hyuk Im, Jun Hong Noh, Jin Hyuck Heo, Tarak N. Mandal, Sang Il Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013. 13(4): p. 1764-1769.
17. Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herz, Henry J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061.
18. Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang, Mercouri G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014. 8(6): p. 489-494.
19. Jeong-Hyeok Im, Hui-Seon Kim, Nam-Gyu Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials, 2014. 2(8): p. 081510.
20. Nam Joong Jeon, Jun Hong Noh, Young Chan Kim, Woon Seok Yang, Seungchan Ryu, Sang Il Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 2014. 13(9): p. 897-903.
21. Jarvist M. Frost, Keith T. Butler, Federico Brivio, Christopher H. Hendon, Mark van Schilfgaarde, Aron Walsh, Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells. Nano Letters, 2014. 14(5): p. 2584-2590.
22. Bart Roose, Sandeep Pathak, Ullrich Steiner, Doping of TiO2 for sensitized solar cells. Chemical Society Reviews, 2015. 44(22): p. 8326-8349.
23. Jing Bai, Baoxue Zhou, Titanium Dioxide Nanomaterials for Sensor Applications. Chemical Reviews, 2014. 114(19): p. 10131-10176.
24. Jih-Sheng Yang, Wen-Pin Liao, Jih-Jen Wu, Morphology and Interfacial Energetics Controls for Hierarchical Anatase/Rutile TiO2 Nanostructured Array for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2013. 5(15): p. 7425-7431.
25. Lee Eng Oi, Min-Yee Choo, Hwei Voon Lee, Hwai Chyuan Ong, Sharifah Bee Abd Hamid, Joon Ching Juan, Recent advances of titanium dioxide (TiO2) for green organic synthesis. RSC Advances, 2016. 6(110): p. 108741-108754.
26. Sih-Han Lin, Yen-Hsun Su, Hsun-Wei Cho, Po-Yen Kung, Wen-Pin Liao, Jih-Jen Wu, Nanophotonic perovskite solar cell architecture with a three-dimensional TiO2 nanodendrite scaffold for light trapping and electron collection. Journal of Materials Chemistry A, 2016. 4(3): p. 1119-1125.
27. Jun Song Chen, Xiong Wen Lou, SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries. Small, 2013. 9(11): p. 1877-1893.
28. Soumen Das, V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science, 2014. 66: p. 112-255.
29. J. Haines, J. M. Léger, X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure:ffRelationships between structure types and implications for other rutile-type dioxides. Physical Review B, 1997. 55(17): p. 11144-11154.
30. Elham Halvani Anaraki, Ahmad Kermanpur, Ludmilla Steier, Konrad Domanski, Taisuke Matsui, Wolfgang Tress, Michael Saliba, Antonio Abate, Michael Grätzel, Anders Hagfeldt, Juan-Pablo Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science, 2016. 9(10): p. 3128-3134.
31. Qin Liu, Min-Chao Qin, Wei-Jun Ke, Xiao-Lu Zheng, Zhao Chen, Ping-Li Qin, Liang-Bin Xiong, Hong-Wei Lei, Jia-Wei Wan, Jian Wen, Guang Yang, Jun-Jie Ma, Zhen-Yu Zhang, Guo-Jia Fang, Enhanced Stability of Perovskite Solar Cells with Low-Temperature Hydrothermally Grown SnO2 Electron Transport Layers. Advanced Functional Materials, 2016. 26(33): p. 6069-6075.
32. Zong-Liang Tseng, Chien-Hung Chiang, Chun-Guey Wu, Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports, 2015. 5: p. 13211.
33. Khalid Mahmood, Bhabani Sankar Swain, Aram Amassian, 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015. 5(17): p. n/a-n/a.
34. Ashok Bera, Arif D. Sheikh, Md Azimul Haque, Riya Bose, Erkki Alarousu, Omar F. Mohammed, Tom Wu, Fast Crystallization and Improved Stability of Perovskite Solar Cells with Zn2SnO4 Electron Transporting Layer: Interface Matters. ACS Applied Materials & Interfaces, 2015. 7(51): p. 28404-28411.
35. Seong Sik Shin, Woon Seok Yang, Jun Hong Noh, Jae Ho Suk, Nam Joong Jeon, Jong Hoon Park, Ju Seong Kim, Won Mo Seong, Sang Il Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nature Communications, 2015. 6: p. 7410.
36. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
37. Julian Burschka, Amalie Dualeh, Florian Kessler, Etienne Baranoff, Ngoc-Lê Cevey-Ha, Chenyi Yi, Mohammad K. Nazeeruddin, Michael Grätzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045.
38. Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel, Nam-Gyu Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2: p. 591.
39. Jun Hong Noh, Nam Joong Jeon, Yong Chan Choi, Md K. Nazeeruddin, Michael Grätzel, Sang Il Seok, Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013. 1(38): p. 11842.
40. Chin Hoong Teh, Rusli Daik, Eng Liang Lim, Chi Chin Yap, Mohd Adib Ibrahim, Norasikin Ahmad Ludin, Kamaruzzaman Sopian, Mohd Asri Mat Teridi, A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2016. 4(41): p. 15788-15822.
41. Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, K. NazeeruddinMd, Michael Gratzel, Sang Il Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013. 7(6): p. 486-491.
42. Vinod E. Madhavan, Iwan Zimmermann, Cristina Roldán-Carmona, Giulia Grancini, Marie Buffiere, Abdelhak Belaidi, Mohammad Khaja Nazeeruddin, Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2016. 1(6): p. 1112-1117.
43. Wei-Yi Chen, Lin-Long Deng, Si-Min Dai, Xin Wang, Cheng-Bo Tian, Xin-Xing Zhan, Su-Yuan Xie, Rong-Bin Huang, Lan-Sun Zheng, Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of the American Chemical Society, 2015. 3(38): p. 19353-19359.
44. Weihai Sun, Senyun Ye, Haixiao Rao, Yunlong Li, Zhiwei Liu, Lixin Xiao, Zhijian Chen, Zuqiang Bian, Chunhui Huang, Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells. Nanoscale, 2016. 8(35): p. 15954-15960.
45. Chuantian Zuo, Liming Ding, Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 2015. 11(41): p. 5528-5532.
46. Weili Yu, Feng Li, Hong Wang, Erkki Alarousu, Yin Chen, Bin Lin, Lingfei Wang, Mohamed Nejib Hedhili, Yangyang Li, Kewei Wu, Xianbin Wang, Omar F. Mohammed, Tom Wu, Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016. 8(11): p. 6173-6179.
47. Jingbi You, Lei Meng, Tze-Bin Song, Tzung-Fang Guo, Yang Yang, Wei-Hsuan Chang, Ziruo Hong, Huajun Chen, Huanping Zhou, Qi Chen, Yongsheng Liu, Nicholas De Marco, Yang Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016. 11(1): p. 75-81.
48. A. Pishtshev, S. Zh. Karazhanov, Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties. The Journal of Chemical Physics, 2017. 146(6): p. 064706.
49. A. R. Zainun, M. H. Mamat, U. M. Noor, M. Rusop, Particles Size and Conductivity Study of P-Type Copper (I) Iodide (CuI) Thin Film for Solid State Dye-Sensitized Solar Cells. IOP Conference Series: Materials Science and Engineering, 2011. 17(1): p. 012009.
50. Doyeol Ahn, Seoung-Hwan Park, Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Scientific Reports 2016. 6: p. 20718.
51. Dmitry Aldakov, Aurelie Lefrancois, Peter Reiss, Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. Journal of Materials Chemistry C, 2013. 1(24): p. 3756-3776.
52. http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html.
53. M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, SnO2 thin films for gas sensor prepared by r.f. reactive sputtering. Sensors and Actuators B: Chemical, 1995. 25(1): p. 465-468.
54. Won‐Kook Choi, Hyung‐Jin Jung, Seok‐Keun Koh, Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996. 14(2): p. 359-366.
55. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, M. D. McGehee, Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science, 2014. 7(11): p. 3690-3698.
56. Ankit Kumar, Srinivas Sista, Yang Yang, Dipole induced anomalous S-shape I-V curves in polymer solar cells. Journal of Applied Physics, 2009. 105(9): p. 094512.
57. B. Y. Finck, B. J. Schwartz, Understanding the origin of the S-curve in conjugated polymer/fullerene photovoltaics from drift-diffusion simulations. Applied Physics Letters, 2013. 103(5): p. 053306.
58. Jun-Seok Yeo, Rira Kang, Sehyun Lee, Ye-Jin Jeon, NoSoung Myoung, Chang-Lyoul Lee, Dong-Yu Kim, Jin-Mun Yun, You-Hyun Seo, Seok-Soon Kim, Seok-In Na, Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 2015. 12: p. 96-104.
59. Jeffrey A. Christians, Raymond C. M. Fung, Prashant V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society, 2014. 136(2): p. 758-764.
校內:2022-08-31公開