簡易檢索 / 詳目顯示

研究生: 陳緯耀
Chen, Wei-Yao
論文名稱: 以點質量法結合GPS,水準與重力資料計算台灣地區大地起伏之研究
A Study of Determination of Taiwan’s Local Geoid by Combination of GPS, Leveling amd Gravity Data with Point Masses
指導教授: 尤瑞哲
You, Rey-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 67
中文關鍵詞: 大地水準面點質輛法
外文關鍵詞: geoid, point mass model
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究聯合GPS資料、水準資料、重力資料與全球大地位模式EGM96,並考慮剩餘地形理論,以點質量法平差模式計算台灣本島之區域大地起伏。觀測量包含1719個一等水準點上的GPS橢球高與水準高量測資料,以及 自由空間重力異常資料。因為點質量法和區域性質量點分佈有相當密切的關係,全球性的點質量法未必適合台灣地區,因此本文進行網格大小、質量點深度與取樣範圍等相關因素之實驗分析。實驗結果顯示,以點質量法為平差模式計算得之大地起伏在整體精度上可達9.1公分,但山區部分較差,精度約為13.1公分。

    Abstract
    In this study, a combination of GPS, leveling, local gravity data and the global gravity model EGM96 with the point mass model is presented for the local geoid determination in Taiwan’s area. The observations include 1719 ellipsoidal height data from GPS measurement and leveling height data at benchmanks of first order in Taiwan as well as a set of free-air gravity anomaly data. Since the point mass model has a close relation with the local mass distribution, the global parameters used in the point mass model may be not suitable for local use. Hence, the parameters in the point mass model, namely the size of grids, the depth of mass points and sampling range are investigated in detail. Our experiments show that the entire accuracy at a 9 cm level is achievable, and the accuracy in the mountain’s area is about 13 cm.

    中文摘要……………………………………………………………………….I 英文摘要………………………………………………………………………II 致謝.........................................................III 目錄…………………………………………………………………………..IV 表目錄………………………………………………………………………..VI 圖目錄……………………………………………………………………….VII 第一章 緒論………………………………………………………………….1 1.1 引言...............................................1 1.2 研究動機與目的……………………………………………….2 1.3 文獻回顧與研究方法.................................2 第二章 大地起伏的決定…………………………………………………….5 2.1 司托克斯基分及其應用……………………………………….5 2.2 最小二乘配置………………………………………………….7 2.3 區域性大地起伏模式與去除回覆技術的應用……………….7 2.4 EGM96大地位模式...................................11 第三章 點質量法原理……………………………………………………….13 3.1固定位置的點質量模式法…………………………………….13 3.2自由位置的點質量模式法…………………………………….18 第四章 實驗與分析………………………………………………………...19 4.1 實驗資料來源………………………………………………….19 4.1.1 GPS與水準資料……………………………………….19 4.1.2 重力資料……………………………………………..21 4.1.3資料預處理…………………………………………….28 4.2質量點安置的實驗與分析……………………………………..31 4.2.1 網格大小的影響……………………………………..32 4.2.2 質量點深度測試……………………………………..35 4.2.3 取樣範圍與深度的影響……………………………..37 4.3 重力觀測數據的影響………………………………………..40 4.4 大地起伏精度………………………………………………..45 第五章 結論與建議…………………………………………………………..51 參考文獻……………………………………………………………………...53

    參考文獻

    尤瑞哲,2005,“高程系統與GPS測高”,第二十四屆測量學術與應用研討會論文集,第793-797頁,2005年9月8-9日,政治大學,台北。

    呂誌強,2004,DEM解析度對大地起伏模式之影響,國立交通大學碩士論文,新竹。
    崔國強、柏茂青,1997,“ㄧ維球面快速傅立葉轉換法計算台灣地區大地起伏之研究”,測量工程,第39卷,第三期,pp.19-33。

    黃金維、郭重言、儲慶美、寗方璽,1998,“台灣重力網平差及重力資料整合”,測量工程,第40卷,第三期,第71-81頁。

    黃金維、王成機,2002,“台灣自由空間重力異常網格”,測量工程,第44 卷,第二期,第1-22頁。

    楊潔豪、崔國強,1994,“考慮不同重力地型化算效應已計算台灣地區大地起伏之研究”,第十三屆測量學術及應用研討會論文集,第177-188頁。

    楊名、陳俊廷、曾清涼,1998,“聯合水準、重力、GPS觀測資料之台灣高程系統精度預估”,第十七屆測量學術及應用研討會論文集,第236-244頁。

    鄭榮和,2001,結合GPS高程及區域大地水準面資料于正高決定之研究,國立成功大學碩士論文,台南。

    Antunes, C, Pail, R. and Catalao, J., 2003,“Point mass method to the regional gravimetric determination of the geoid”, Stud. Geophys. Geod, 47, pp. 495-509.

    Barthelmes, F., 1986, Untersuchungen zur Apporximation des äuβeren Schwerefeleds der Erde durch Punktmassen mit optimierten Position, Report Nr. 92, Veroffentlichungen des Zentralinstitut der Erde, Potsdam.

    Barthelmes, F. R., and Dietrich,R., 1991,“Use of point masses on optimized positions for approximation of the geavity field”, In: Determination of the Geoid: Present and Future, Springer, Berlin, pp. 484-493.

    Claessens, S. J., Featherstone, W. E. and Barthelmes, F., 2001,“Experience with point-mass gravity field modeling in the perth region”, Western Austalia, Geomatics Reseach Australasia, 75, pp.53-74.

    Cordell, L., 1992,“A Scattered equivalent-soure method for interpolation and gridding of potential-field data in three dimension”, Geophysics, 57, pp. 692-

    Dampancy, C., 1969, “The equivalent source technique”, Geophysics, 34: 39-53.

    Denker, H., Torge, W., Wenzel, G., Ihde, J. and Schirmer, U., 1999,“Investigation of different methods for the combination of gravity and GPS-levelling data” in: Geodesy beyond 2000, the Challenges of the first Decade, Springer, Berlin, pp. 137-142.

    Feathertone, W. E., 1999, report IAG special group 3.177 synthetic modeling of the earth gravity field (1996~1999).
    http://www.cage.curth.edu.au/~will/iagssg3177.html

    Featherstone, W. E., 2000,“Refinement of a gravimetric geoid using GPS and leveling data”, Journal of Surveying Engineering, 126(2), pp. 27-56.

    Forsberg, R. and Tscherning, C. C., 1981,“The Use of Height Data in Gravity Field Approximation by Collocation”, Journal of Geophysical Research, 86(B9), pp. 7843-7854.

    Forsberg, R., 1984,“A study of terrain reduction, density anomalies and geophysical inversion methods in gravity field modeling”, Rep. 355, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Forsberg, R. and Sideris, M. G., 1992, “Geoid Computation by the Multi- Band Spherical FFT Approach”, Manuscripta Geodaetica.

    Heiskanen, W. A. and Moritz, H., 1967, Physical Geodesy. W. H. Freeman
    and company, San Francisco.

    Hwang, C., 1997,“Analysis of some systematic errors affecting altimeter-derived sea surface gradient with application to geoid determination over Taiwan”, Journal of Geodesy, 71(2), pp. 113-130.

    Hwang, C and Hwang, L. S., 2002, “Use of geoid for assessing trigonometric height accuracy and detecting vertical land motion”, J. Surveying Engineering, 128(1), pp. 1-20.

    Ihde, J., Schirmer, U., Stefani, F. and Toppe, F., 1998,“Geoid modeling with point masses”, Proceedings of the Second continental Workshop on the Geoid in Europe, Budapest, March, pp. 199-204.

    Kotsakis, C. and Sideris, M. G., 1999,“On the adjustment of combined GPS/
    Levelling/geoid network”, Journal of Geodesy, 73, pp. 412-421.

    Lehmann, R., 1993,“The method of free-positioned point masses-geoid studies on the Gulf of Bothnia”, Bulletin Geodesique, 67, pp. 31-40.

    Lehmann, R., 1994,“Nonlinear gravity field inversion using point masses-
    diagnosing nonlinearity”, in: Geodesy and physics of the earth, Springer,Berlin, pp. 256-260.

    Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Luthcke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H. and Olson, T. R., 1998, The Development of the Joint NASA GSFC and the National imagery and mapping agency(NIMA) Geopotential Model (EGM96), NASA Tech. Rep.:NASA/TP-1998-206861, Greebelt.

    Moritz, H., 1980, Advanced Physical Geodesy, Herbert Wichman Verlag.
    Schwarz, K. P., Sideris, M. G. and Forsberg, R., 1990,“The Use of FFT
    Techniques in Physical Geodesy”, Geophysical Journal International, 100, pp. 485-514.

    Schwarz, K. P., Sideris, M. G., Forsberg, R., 1987, “Orthometric Heights without Leveling”, Journal of Surveying Engineering, Vol. 113. N0. 1.

    Strang Van Hees, C. L., 1990, “Stokes formula using fast fourier techniques”, Manuscripta Geodaetica, Vol. 15, pp. 235-239.

    Vermeer, M., 1995,“Mass point geopotential modeling using fast spectral
    Techniques: historical overview,toolbox description, numerical
    Experiment”, Manuscripta geodaetica, 20, pp. 362-378.

    Weightman, J. A., 1965“Gravity, Geodesy and Artificial Satellites. A Unint Analytical Approach”, In: Proc. Second international Symposium on the Use of Artifical Satellites for Geodesy, Athens, 27 April-1 May 1965, pp. 469-487.

    You, R. J., 2006,“Local geoid improvement using GPS and leveling Data: Case Study ”, J. Surveying Engineering, ASCE (in press).

    下載圖示 校內:立即公開
    校外:2006-08-29公開
    QR CODE