簡易檢索 / 詳目顯示

研究生: 邱國智
Chiu, Kuo-Chih
論文名稱: 電漿子強化之感測與影像技術
Plasmon-enhanced Sensing and Imaging
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 109
中文關鍵詞: 電漿子表面強化拉曼散射非線性顯微術螢光顯微術
外文關鍵詞: surface plasmons, surface-enhanced Raman scattering, nonlinear microscopy, fluorescence microscopy
相關次數: 點閱:216下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究表面電漿子與粒子電漿子之局域電磁場強化現象於表面強化拉曼散射(surface-enhanced Raman scattering,SERS)與螢光影像技術的影響。由於生物分子之拉曼訊號相當微弱,必須藉由粒子電漿子的操控使訊號放大。採用兩種SERS基材來觀察生物分子之拉曼訊號,一種為膠體奈米銀粒子,另一種則使用飛秒雷射加工製造。第一種方式是利用化學合成方式來製造奈米銀粒子,用來排列於奈米膜層上之金屬粒子大小與其分佈情形,並建立聚焦式與衰減全反射方式微拉曼光譜儀來加以量測分析;第二種則為使用飛秒雷射加工矽晶圓製造SERS的基材,基材能同時產生類似光柵的奈米結構及藉由雷射誘發光還原效應形成奈米銀粒子,可達單一步驟且大面積的製作,其訊號增強因子可達106倍。SERS基材將可研究固定於表面之生物分子結構資訊,得到其SERS光譜訊號並加以分析討論,我們將可建構一藉由電漿子來強化量測訊號之SERS的生物分子辨識平台,提供生物分子的結構改變之資訊,以期在生物分子結構的研究上有所幫助。
    另一方面則利用表面電漿子來增強雙光子激發螢光之影像,藉由Fresnel方程式和古典偶極輻射模型理論研究局域電場增強、量子效率及螢光發射耦合效率與螢光分子與金屬表面之間之表面電漿子效應。經由局域電場增強與螢光發射耦合效率理論分析得到,銀膜的厚度在40 nm時,有最佳的雙光子激發螢光收光效率。而且濺鍍銀膜前先鍍上一層鍺層,將可改善銀膜的表面粗糙度低於1 nm,這將可減少局域熱點的產生,其中局域熱點會破壞影像均勻度。而在高能雷射的照射下,發現將會破壞原有設計的膜層結構,藉由鍍上二氧化矽的保護層來避免銀膜被破壞的情形,還可降低銀膜對螢光的淬滅效應。在螢光影像上,已取得螢光球在水中的雙光子激發之螢光影像及其後焦平面的表面電漿耦合放光環之影像,這樣的膜層設計將可有效率的用來觀測水中的螢光影像,進而可應用在生物分子螢光影像觀測的研究方面。

    In this thesis, local electric field enhancement via surface plasmons (SPs) and particle plasmons (PPs) has been investigated in the influences of surface-enhanced Raman scattering (SERS) and fluorescence imaging. The Raman signal of biomolecules is tiny, and hence it is needed to be magnified by other approaches such as manipulating SPs and PPs. Two kinds of SERS substrates were used for biomolecule observation. One is to control colloid nanoparticles and the other is fabricated by femtosecond laser. Using a chemical synthesis approach to fabricate silver (Ag) nanoparticles, the size and distribution of embedded metal nanoparticles can be controlled on the sensor surface to enhance the local electric field. On the other hand, the silicon substrate in the silver nitrate solutions was machined by the femtosecond laser fabrication. The substrate can achieve simultaneously the generation of grating-like nanostructures and the formation of Ag nanoparticles on the surface via the laser-induced photoreduction effect. By femtosecond laser fabricated substrate, the enhancement factor can reach to 106. The biomolecular recognition platform utilizing the plasmon-enhanced signal of SERS offers the structural information of biomolecules.
    By utilizing the Fresnel equation and classical dipole radiation modeling, local electric field enhancement, fluorescence quantum yield, and fluorescence emission coupling yield via SPs were theoretically analyzed between the fluorescence dye and the metal film. The optimal condition of an Ag film deposited on a cover slip for surface plasmon-coupled emission (SPCE) induced two-photon excited fluorescence (TPEF) based on an objective-based, total internal reflection (TIR) microscope was investigated. According to the theoretical simulations of local electric field enhancement and fluorescence coupled emission efficiency, the thickness of the Ag film should be about 40 nm in order to maximize the TPEF collection efficiency by the objective. The deposited Ag film with a germanium seed layer on a cover slip exhibits additional improvement in surface smoothness by reducing variations in surface roughness to below 1.0 nm, thereby reduces local hot spots which degrade the image uniformity. Moreover, an Ag film with a 20 nm-thick SiO2 spacer not only prevents damage caused through interaction with the aqueous solution under high laser power irradiance, but also reduces the fluorescence quenching effect by the Ag film. By optimizing the Ag film thickness, surface smoothness, and a protective dielectric spacer, efficient TIR TPEF imaging can be achieved through SPCE.

    Abstract I 摘要 III Acknowledgement V Contents VI List of Figures IX List of Tables XV Abbreviation XVI Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Motivation 5 1.3 Outline 6 Chapter 2 Plasmon Enhancements for Fluorescence and Raman Signals 8 2.1 Theory of surface plasmon resonance 8 2.1.1 Surface plasmon wave and dispersion relationship 8 2.1.2 Excitation of surface plasmons by light 18 2.2 Theory of particle plasmons 26 2.2.1 Excitation of particle plasmons 26 2.2.2 Field enhancement of particle plasmons 29 2.3 Surface-enhanced Raman scattering 32 2.3.1 Raman scattering 32 2.3.2 Physical mechanism of SERS 35 2.4 Fluorescence 39 2.4.1 The absorption and emission process 39 2.4.2 Fluorescence quantum yield and emission coupling yield 41 2.4.3 Fluorescence enhancement 46 2.5 Surface plasmon-coupled emission 46 Chapter 3 Surface-enhanced Raman Sensing 49 3.1 Colloid nanoparticle-based SERS substrate 49 3.1.1 Raman spectrometer 49 3.1.2 Sample preparation 53 3.1.3 Experimental results 55 3.2 Fabrication of SERS substrate by femtosecond laser 59 3.2.1 Sample preparation 59 3.2.2 Experimental results 60 Chapter 4 Surface Plasmon-coupled Emission Induced Two-photon Excited Fluorescence Imaging 66 4.1 Objective-coupled evanescence wave microscopy 66 4.2 Sample preparation 71 4.3 Theoretical analysis 72 4.4 Experimental results 75 4.4.1 Surface roughness 75 4.4.2 Dielectric spacer for protection from water 80 4.4.3 Two-photon excited fluorescence imaging 85 Chapter 5 Conclusions 94 References 96 Curriculum Vitae 105

    1. J. G. Quinn, S. O’Neill, A Doyle, C. McAtamney, D. Diamond, B. D. MacCraith, and R. O’Kennedy, “Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions,” Anal. Biochem. 281, 135-143 (2000).
    2. M. H. Hou, S. B. Lin, J. M. Yuann, W. C. Lin, A. H. Wang, and L. S. Kan, “Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure,” Nucleic Acids Res. 29, 5121-5128 (2001).
    3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, and I. Itzkan, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667-1670 (1997).
    4. A. D. Dayan and A. J. Paine, “Mechanism of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000,” Hum. Exp. Toxicol. 20, 439-451 (2001).
    5. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889-1892 (1996).
    6. M. C. Chen, S. D. Tsai, M. R. Chen, S. Y. Ou, W.-H. Li, and K. C. Lee, “Effect of silver-nanoparticle aggregation on surface-enhanced Raman scattering from benzoic acid,” Phys. Rev. B. 51, 4507-4515 (1995).
    7. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32, 2372-2377 (2004).
    8. F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765-6770 (2004).
    9. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
    10. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B 107, 148-153 (2005).
    11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
    12. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979-2983 (2007).
    13. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807-12817 (2010).
    14. V. Kapaklis, P. Poulopoulos, V. Karoutsos, T. Manouras, and C. Politis, “Growth of thin Ag films produced by radio frequency magnetron sputtering,” Thin Solid Films 510, 138-142 (2006).
    15. L. Yin, V. K. V. Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399-1402 (2005).
    16. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076-1083 (2007).
    17. Y. Chi, E. Lay, T.-Y. Chou, Y.-H. Song, and A. J. Carty, “Deposition of silver thin films using the pyrazolate complex [Ag(3,5-(CF3)2C3HN2)]3,” Chem. Vap. Deposition 11, 206-212 (2005).
    18. L. VJ, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, “Ultrasmooth silver thin films deposited with a germanium nucleation layer,” Nano Lett. 9, 178-182 (2009).
    19. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano 4, 3139-3146 (2010).
    20. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48, 5683-5691 (2009).
    21. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluor. 12, 121-129 (2002).
    22. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1-24 (2001).
    23. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987-5997 (2009).
    24. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
    25. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491, 173-176 (2005).
    26. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Letts. 465, 92-95 (2008).
    27. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875-879 (2010).
    28. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35, 408-410 (2010).
    29. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35, 517-519 (2010).
    30. M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation (Thomson, 1994).
    31. D. R. Tilley, K. Welford, J. R. Sambles, A. D. Boardman, T. Twardowski, and R. A. Innes, eds. Surface Plasmon-Polaritations (IOP Publishing Ltd, 1984).
    32. R. F. Wallis and G. I. Stegeman, eds. Electromagnetic Surface Excitations (Springer-Verlag, 1985).
    33. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. 23A, 2135-2136 (1968).
    34. C.-Y. Lin, Surface Plasmon-Enhanced Two-Photon Imaging and Optical Trapping, Ph.D Thesis, National Cheng Kung University, June (2010).
    35. E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
    36. U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster (Springer, 1995).
    37. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
    38. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    39. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (Singapore: World Scientific, 1990).
    40. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Boston: Artech House, 1990).
    41. A. Taflove, Computational Electrodynamics: the Finite-difference Time-domain Method (Boston: Artech House, 1995).
    42. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087-1090 (2003).
    43. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107, 7607-7617 (2003).
    44. S. Kawata edited, Near-Field Optics and Surface Plasmon Polaritons (Berlin: Springer-Verlag, 2001).
    45. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari and M. S Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002).
    46. D. A. Long, The Raman effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (New York: John Wiley & Sons, 2002).
    47. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
    48. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14, 1149-1159 (1997).
    49. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14, 1160-1166 (1997).
    50. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192-1201 (1998).
    51. H. Benisty, H. D. Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electronics 34, 1612-1631(1998).
    52. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391-3395 (1982).
    53. R. C. Lord and G. J. Thomas, “Raman spectral studies of nucleic acids and related molecules-I Ribonucleic acid derivatives,” Spectrochimica Acta. 23A, 2551-2591 (1967).
    54. K. Szczepaniak, M. M. Szczesniak, and W. B. Person, “Raman and infrared spectra of thymine. a matrix isolation and DFT study,” J. Phys. Chem. A 104, 3852-3863 (2000).
    55. L. Movileanu, J. M. Benevides, and G. J. Thomas, “Temperature dependence of the Raman spectrum of DNA. Part I – Raman signatures of premelting and melting transitions of poly(dA-dT).poly(dA-dT)” J. Raman Spectrosc. 30, 637-649 (1999).
    56. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17, 21581-21589 (2009).
    57. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon modification thresholds and morphology,” Appl. Phys. A-Mater. Sci. Process 74, 19-25 (2002)
    58. I. S. Sztainbuch, “ The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” J. Chem. Phys. 125, 124707 (2006)
    59. H. Hada, Y. Yonezawa, A. Yoshida and A. Kurakake, “Photoreduction of silver ion aqueous and alcoholic solutions.” J. Phys. Chem. 80, 2728-2731 (1976)
    60. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. 1. Ag island films and Ag film over polymer nanosphere surface supported on glass,” J. Chem. Phys. 99, 2101–2115 (1993).
    61. G. L. Liu and L. P. Lee, “Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics,” Appl. Phys. Lett., 87, 074-101 (2005).
    62. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979-2983 (2007).
    63. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358-379 (1959).
    64. E. Fontana and R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy,” Phys. Rev. B 37, 3164-3182 (1988).
    65. Y.-D. Su, K.-C. Chiu, N.-S. Chang, H.-L. Wu, and S.-J. Chen, “Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy,” Opt. Express 18, 20125-20135 (2010).
    66. G. Valette, “Silver-water interactions: Part I. Model of the inner layer at the metal/water interface,” J. Electroanal. Chem. 230, 189-204 (1987).
    67. D. G. Zhang, K. J. Moh, and X.-C. Yuan, “Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules,” Opt. Express 18, 12185-12190 (2010).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE