簡易檢索 / 詳目顯示

研究生: 簡培偉
Chien, Pei-Wei
論文名稱: 通道摻雜矽鍺/矽場效電晶體
Doped-Channel SiGe/Si Field-Effect Transistors
指導教授: 張守進
Chang, Shoou-Jinn
吳三連
Wu, San-Lein
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 121
中文關鍵詞: 應變矽鍺材料通道摻雜場效電晶體高平面摻雜
外文關鍵詞: strained SiGe, doped-channel field-effect transistor, delta-doping
相關次數: 點閱:104下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將利用應變矽鍺材料優異的電洞傳輸特性及和矽材料之間形成的能帶工程,來研製P型摻雜異質接面場效電晶體。文中的P-型摻雜是以能將摻雜控制在數個原子層的高平面摻雜為主,並且我們將導入元件結構之設計。材料分析方面,我們將探討以超高真空化學氣相沉積法成長之高平面摻雜矽層,以及固體源分子束磊晶法成長之高平面摻雜矽鍺層,並以二次離子質譜儀及穿透式電子顯微鏡來分析其摻雜的分布及磊晶的品質。
    在元件研製部份,包含以高平面摻雜作為載子提供層或者作為傳輸通道之矽鍺/矽異質接面金屬-半導體接面場效電晶體將被探討,包括反向調變式摻雜場效電晶體、通道摻雜場效電晶體及將通道摻雜場效電晶體成長在SOI (Silicon-on-insulator)基板上。由實驗結果可得知,所研製之元件具有高元件線性度,此也意味著所研製之電晶體將是具有前瞻性的技術之一。

    In this dissertation, we utilize the improved hole transport characteristics and energy bandgap engineering in strained SiGe/Si heterojunction to implement p-type doped heterostructure filed-effect transistors (HFETs). Delta doping, which is a highly doping technique within a few monolayers, will be also adopted in the device design. Delta-doped Si grown by ultra high vacuum chemical vapor deposition (UHV/CVD) and delat doped SiGe grown by solid source molecular beam epitaxy (SSMBE) are analyzed by secondary-ion mass spectroscopy (SIMS) and cross-sectional transmission electron micrograph (TEM) instruments.
    Then a series of devices with delta doped layer as carrier supplying layer or the conducting channel are fabricated, including inverted modulation-doped field-effect transistor (MODFET), delta-doped-channel field-effect transistor (DDCFET), and DDCFET grown on SOI (silicon-on-insulator). According to the experimental results, the excellent device linearity had been observed in DCFET, which means DCFET is a promising candidate for transistor performance enhancement.

    Abstract (Chinese) i Abstract (English) iii Acknowledgements iv Contents v Table Captions viii Figure Captions ix Chapter 1 Introduction 1 1.1 Motivations 1 1.2 Organization 3 Reference 4 Chapter 2 Characteristics of Si1-xGex Heterostructures 6 2.1 Properties of SiGe/Si Heteroepitaxial Layer 6 2.2 Bandgaps of Strained SiGe/Si 7 2.3 Band Alignments of SiGe/Si Heterostructure 8 2.4 Transport Properties of Strained SiGe/Si 10 Reference 25 Chapter 3 SiGe/Si Uniformly-Doped-Channel Field-Effect Transistors 27 3.1 Motivation 27 3.2 Device Structure and Fabrications 28 3.3 Characteristics of SiGe/Si UDCFETs 32 3.4 Summary 33 Reference 46 Chapter 4 Delta Doping 48 4.1 Motivation 48 4.2 P-type-doped Si Layers 49 4.3 P-type-doped SiGe Layers 53 4.4 Summary 56 Reference 72 Chapter 5 SiGe/Si Inverted Modulation-Doped Field-Effect Transistor 75 5.1 Motivation 75 5.2 Device Structure and Fabrications 76 5.3 Characteristics of SiGe/Si Inverted MODFET 76 5.4 Optimizing SiGe/Si Inverted MODFET 77 5.5 Summary 80 Reference 91 Chapter 6 SiGe/Si Delta-Doped-Channel Field-Effect Transistors 92 6.1 Motivation 92 6.2 Comparison of SiGe/Si SUDCFET with CDDCFET 92 6.3 Comparison of SiGe/Si T/C/BDDCFETs 93 6.4 SiGe/Si CDCCFET on SOI 96 6.5 Summary 98 Reference 118 Chapter 7 Conclusion and Future Work 119 7.1Conclusion 119 7.2 Future Work 120

    [1.1] G. E. Moore, “ Gramming More components onto integrated circuits,” Electronics 38, 1965.
    [1.2] B. Yu, H. Wang, C. Riccobene, Q. Xiang; M. R. Lin,” Limits of gate-oxide scaling in nano-transistors,” VLSI symp., p. 90, 2000.
    [1.3] L.-A. Ragnarsson, L. Pantisano, V. Kaushik, S.-I. Saito, Y. Shimamoto, S. D. Gendt, M. Heyns, “The impact of sub monolayers of HfO/sub/ on the device performance of high-k based transistors,” IEDM Tech. Dig. p. 4.2.1, 2003.
    [1.4] D. A. Dallmann, K. Shenai, “Scaling constraints imposed by self-heating in submicron SOI MOSFET's,” IEEE Trans. Electron Device vol. 42, 3, p. 489 , 1995.
    [1.5] J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, “Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy,” Appl. Phys. Lett., vol. 44, p. 102, 1986.
    [1.6] J. M. Hinckley and J Singh , “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si(001) substrate,” Phys. Rev. B, vol. 41, 5, p. 2912, 1990.
    [1.7] S. Kook and K. L. Wang, “Effective mass and mobility of holes in strained Si1-xGex layers on substrate,” IEEE Trans. Electron Device vol. 39, 9, p.2153,1992.
    [1.8] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, p. 797, 1986.
    [1.9] B. S. Meyerson, “UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applications,” Proc. IEEE, vol. 80, p. 1592, 1992.K. Oda, E. Ohue, M.
    [1.10] B. Tillack, D. Krüger, P. Gaworzewski, and G. Ritter, “Atomic layer doping of SiGe by low pressure chemical vapor deposition,” Thin Solid Films, vol. 294, p. 15, 1997.
    [1.11]B. Tillack, G. Ritter, D. Krüger, P. Zaumseil, G. Morgenstern, and K. D. Glowatzki, “Sharp boron doping within thin SiGe layer by rapid thermal chemical vapor deposition,” Mater. Sci. Technol., vol. 11, p. 1060, 1995.
    [1.12] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. van Ijzendoorn, and P. C. Zalm, “Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD,” Jpn. J. Appl. Phys., vol. 29, p. 2307, 1990.
    [1.13] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A, vol. 2, p. 436, 1984.
    [1.14] J. R. Arthur, “ Molecular beam epitaxy,” Surf. Sci., vol. 500, p. 189, 2002.
    [1.15] M. A. Herman, “Approaches to understanding MBE growth phenomena,” Thin Solid Films, vol. 267, no. 1-2, p. 1, 1995.
    [2.1] G.C. Osbourn,”Strained-layer superlattices from lattice mismatched materials,” J. Appl. Phys., vol. 53, p. 1586, 1982.
    [2.2] J. H. VAN DER Merwe, “Crystal interfaces. Part II. Finite overgrowths,” J. Appl. Phys., vol. 34, p. 123, 1963.
    [2.3] R. People, “Physical and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., vol. QE-22, no. 9, p. 1696, 1986.
    [2.4] R. People and J. C. Bean “Calculation of critical thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47, p. 322, 1985.
    [2.5] R. People and J. C. Bean “Band alignments of coherently strained GexSi1-x/Si heterostructures on <001> GeySi1-y substrates,” Appl. Phys. Lett., vol. 48, p. 536, 1986.
    [2.6] D. V. Lang, R. People, J. C.Bean, and A. M. Sergent “Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47, p. 1333, 1985.
    [2.7] C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system” Phys. Rev. B, vol. 34, no. 8, p. 5621, 1986.
    [2.8] J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, “Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x<y) virtual substrate,” IEEE Electron Device Lett., vol. 24, no. 7, p. 460, 2003.
    [2.09] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained Si on (100) Si1–xGex substrate,” Appl. Phys. Lett. vol. 64, p. 2514, 1994
    [2.10] S. K. Chun, and K. L. Wang, “Effective mass and mobility of holes in strained Si1-xGex on (001) Si1-yGey substrate,” IEEE Trans. Electron Devices, vol. 39, p. 2153, 1992.
    [2.11] G. Hock, T. Hackbarth, U. Erben, E. Kohn, and U. Konig, “High performance 0.25 m p-type Ge/SiGe MODFET’s,” Electron. Lett. 34, p. 1888, 1998
    [2.12] T. Vogelsang and K. R. Hofmann, “Electron transport in strained Si layers on Si1−x Gex substrate, “ Appl. Phys. Lett. vol. 63, p. 186, 1993.
    [2.13] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the performance enhancement in strained-Si n-MOSFETs,” IEDM Tech. Dig., p. 373 , 1994
    [2.14] K. Ismail, S. F. Nelson, J. O. Chu, and B. S. Meyerson, “Electron transport properties of Si/SiGe heterostructures: Measurements and device implications,” Appl. Phys. Lett. 63, pp. 660, 1993
    [2.15] N. Sugii, K. Nakagawa, Y. Kimura, S. Yamaguchi, and M. Miyao, “High Electron Mobility in Strained Si Channel of Si1-xGex/Si/Si1-xGex Heterostructure with Abrupt Interface,” Semicond. Sci. Technol. 13, pp. A140, 1998
    [2.16] J. Weiser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Dev. Lett. 15, pp. 100, 1994
    [3.1] M. Arafa, P. Fay, K. Ismail, J. O. Chu, B. S. Meyerson, and I. Adesida, “High speed P-type SiGe modulation-doped field effect transistors” IEEE Electron Device Letters, vol. 17, p.124, 1996.
    [3.2] S. J. Koester, R. Hammond, and J. O. Chu, “Extremely high transconductance Ge/Si0.4Ge0.6 p-MODFET’s grown by UHV-CVD,” IEEE Electron Device Letters, vol. 21, p.110, 2000.
    [3.3] G. Hock, T. Hackbarth, U. Erben, E. Kohn, and U. Konig, “High performance 0.25um p-type Ge/SiGe MODFETs,” Electron. Lett., vol. 34, p.1888, 1998.
    [3.4] A. A. Iliadis, J. K. Zahurak, and S. A. Tabatabaei, “Application Specific Devices: Transport and performance of qusai-MODFET and the graded base heterojunction bipolar transistor,” Semiconductor Conference, vol. 2, p. 479, 1996.
    [3.5] T. Akinwande, J. Zou, M. S. Chur, and A. Gopinath, “Dipole heterostructure field-effect transistor,” IEEE Electron Device Lett., vol. 11, no. 8, p. 332, 1990.
    [3.6] H. Hida, A. Okamoto, H. Toyoshima, and K. Ohata, "An investigation of i-AlGaAs/n-GaAs doped-channel MIS-like FETs (DMT’s) properties and performance potentialities, " IEEE Trans., ED-34(7), p. 1745, 1987.
    [3.7] M. T. Yang and Y. J. Chan "Device linear comparisons between doped-channel and modulation-doped designs in pseudomorphic Al0.3Ga.7As / In0.2Ga0.8As heterostructures" IEEE Electron Device Lett., ED-43 (8), p.1174, 1996.
    [3.8]J. A. D. Alamo, and T. Mizutani, "An In0.52Al0.48As/ n+-In0.53Ga0.47As MESFET with a heavily doped channel, " IEEE Electron Device Lett., vol. 8, p.534, 1987.
    [3.9]Y. J. Chan and M. T. Yang, "Device linear improvement by AlGaAs/InaAs heterostructure doped-channel FET’s" IEEE Electron Device Lett., vol. 16, p. 33-35, 1995.
    [3.10]W. C. Liu, W. C. Hsu, L. W. Laih, J. H. Tsai and W. S. Lour, "Performance enhancement in a metal-insulator-semiconductor-like pseudomorphic transistor by utilizing an n--GaAs/n+-In0.2Ga0.8As two-layer structure" Appl. Phys. Lett., vol. 66, p. 1524, 1995.
    [3.11] S. L. Wu, T. K. Carns, S. J. Wang, and K. L. Wang, “Boron delta-doped Si metal semiconductor field-effect transistor grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 63, no. 10, p. 1363, 1993.
    [4.1] C. E. C. Wood, G. Metze, J. Berry, and L. F. Eastman, “Complex free-carrier profile synthesis by “atomic-plane” doping of MBE GaAs,” J. Appl. Phys., vol. 51, no. 1, p.383, 1980.
    [4.2] E. F. Schubert, and K. Ploog, “The δ-doped field-effect transistor,” Jpn. J. Appl. Phys., vol. 24, no. 8, p. L608, 1985.
    [4.3] E. F. Schubert, A. Fisher, and K. Ploog, “The delta-doped field-effect transistor (δFET),” IEEE Trans. Electron Devices, vol. 33, no. 5, p. 625, 1986.
    [4.4] H. Jorke, and H. Kibbel, “Boron delta doping in Si and Si0.8Ge0.2 layers,” Appl. Phys. Lett., vol. 57, no. 17, p. 1763, 1990.
    [4.5] N. L. Mattey, M. G. Dowsett, E. H. C. Parker, and T. E. Whall, “P-type delta-doped layers in silicon: Structural and electronic properties,” Appl. Phys. Lett., vol. 57, no. 16, p. 1648, 1990.
    [4.6] H. P. Zeindl, T. Wegehaupt, and I. Eisele, “Growth and characterization of a delta-function doping layer in Si,” Appl. Phys. Lett., vol. 50, no. 17, p. 1164, 1987.
    [4.7] H. P. Zeindl, B. Bullemer, and I. Eisele, “Delta-doped MESFET with MBE-grown Si,” J. Electrochem. Soc., vol. 136(4), p. 1129, 1989.
    [4.8] A. A. van Gorkum, K. Nakagawa, and Y. Shiraki, “Growth and characterization of atomic layer doping structure in Si,” J. Appl. Phys., vol. 65, no. 6, p. 2485, 1989.
    [4.9] E. F. Schubert, J. E. Cunningham, W. T. Tsang, and T. H. Chiu, "Delta-doped ohmic contacts to n-GaAs," Appl. Phys. Lett., vol. 49, no. 5, 4, p. 292, 1986.
    [4.10] J. D. Werking, C. R. Bolognesi, L. D. Chang, C. Nguyen, E. L. Hu, and H. Kroemer, “High-transconductance InAs/AlSb heterojunction field-effect transistors with δ-doped AlSb upper barriers,” IEEE Electron Device Lett., vol. 13, no. 3, p. 164, 1992.
    [4.11] S. L Wu and S. J. Chang, "Si field-effect transistor with doping dipole in buffer layer," Appl. Phys. Lett., vol. 75, no. 18, p. 2848, 1999.
    [4.12] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “High-transconductance delta-doped InAs-AlSb HFETs with ultrathin silicon-doped InAs quantum well donor layer ,” IEEE Electron Device Lett., vol. 19, p. 83, 1992.
    [4.13] Q. Chen, M. Willander, J. Carter, C. H. Thaki, and E. R. A.Evans, “Fabrication and performances of delta-doped Si n-MESFET grown by MBE,” Electron. Lett., vol. 29, no. 8, p. 671, 1993.
    [4.14] H. Shiomi, Y. Nishibaysshi, N. Toda, and S. Shikata, “Pulse-doped diamond p-channel metal semiconductor field effect transistor,” IEEE Electron Device Lett., vol. 16, p. 36, 1995.
    [4.15] C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “A novel δ-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability,” IEEE Electron Device Lett., vol. 16, no. 3, p. 112, 1995.
    [4.16] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition, ”Appl. Phys. Lett., vol.48, p. 797 , 1986.
    [4.17] C.P. Parry, S.M. Newstead, R.D. Barlow, P. Augustus, R.A.A. Kubiak, M. G. Dowsett, T. E. Whali, E. H. C. Parker, “Elemental boron doping behavior in silicon molecular beam epitaxy,”Appl. Phys. Lett., vol.58, p. 481 , 1991.
    [4.18] R. TSu, D. Lubben, T. R. Bramblett, and J. E. Greene, “Mechanisms of excimer laser cleaning of air-exposed Si(100) surfaces studied by Auger electron spectroscopy, electron energy-loss spectroscopy, reflection high-energy electron diffraction, and secondary-ion mass spectrometry, ” J. Vac. Sci. Technol., vol. A9, p. 223,, 1991.
    [4.19] E. Kasper and H. J. Herzog, “Elastic strain and misfit dislocation density in SiGe films on Si substrate, ” Thin Solid Films, vol. 44, p. 357, 1977.
    [4.20] N. L. Mattery, M. G. Dowsett, E. H. C. Parker, T. E. Whall, S. Taylor, and J. E. Zhang, “P-type delta-doped layers in silicon: structural and electronic properties, ” Appl. Phys. Lett., vol. 57, p.1648, 1990.
    [4.21] J.C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GeXSi1-X/Si strained–layer supperlattices growth by molecular beam epitaxy, ” J. Vac. Sci. Technol., vol. A2, p. 436,, 1984.
    [4.22] H. Jorke and H. Kibbel, "Boron delta-doping in silicon and Si0.8Ge0.2 layers," Appl. Phys. Lett., vol. 57, p. 1763, 1990.
    [4.23] N. L. Mattery, M. G. Dowsett, E. H. C. Parker, T. E. Whall, S. Taylor, and J. E. Zhang, "P-type delta-doped layers in silicon: structural and electronic properties," Appl. Phys. Lett., vol. 57, p. 1648,1990.
    [5.1] S. M. Sze. “High-Speed Semiconductor Devices,” Chap. 5, Sect. 5.2, p.285
    [5.2] L. F. Luo, K. F. Longenbach, and W. I. Wang, “p-channel modulation- doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, no. 12, p. 567, 1990.
    [6.1]M. Yoshimi, H. Hazama, M. Takahashi, S. Kambayashi, T. Wada, K. Kato, and H. Tango, “Two-dimensional simulation and measurement of high-performance MOSFET’s made on a very thin SOI film,” IEEE Trans. on Electron Devices, vol. 36, no. 3, p. 493, 1989
    [6.2]D. K. Nayak, J. C. S. Woo, G. K. Yabiku, K. P. MacWilliams, J.S. Park and K. L. Wang, “ High-mobility GeSi PMOS on SIMOX,” IEEE Electron Device Lett , vol. 14, p. 520, 1993
    [6.3]D. K. Nayak, J. C. S. Woo, J.S. Park, K. L. Wang, and K. P. MacWilliams, “ Hole-confinement in a Si/GeSi/Si Quantym Well on SIMOX,” IEEE Trans. on Electron Devices, vol. 43, no. 1, p. 180, 1996

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE