簡易檢索 / 詳目顯示

研究生: 蔡佩杏
Tsai, Pei-Shing
論文名稱: 63Sn/37Pb及Sn/3.5Ag/0.75Cu BGA銲點試片在循環傾斜位移測試下初始壽命預估-含循環損傷內涵時間黏塑性理論之應用
Endochronic Prediction of Fatigue Initiation Life of BGA (63Sn/37Pb and Sn/3.5Ag/0.75Cu) Solder Joint Specimens under Cyclic Oblique Displacement Test
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 125
中文關鍵詞: 循環比例位移路徑63Sn/37PbSn/3.5Ag/0.75CuBGA銲點試片循環內涵時間黏塑性理論內涵損傷演化方程式損傷因子Endochronic疲勞壽命預估公式
外文關鍵詞: Oblique displacement path, Sn/3.5Ag/0.75Cu, 63Sn/37Pb, BGA solder joint specimen, Endochronic cyclic viscoplasticity, Damage factor, Endochronic fatigue life prediction
相關次數: 點閱:173下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討傾斜位移路徑下,利用BGA銲點試片測試系統負荷-位移修正法及試片夾具勁度值將63Sn/37Pb BGA試片位移-負荷數據修正成錫球位移-負荷數據。 下之拉-扭循環比例位移路徑使用循環內涵時間黏塑性理論之塊材63Sn/37Pb核心函數,預測各 下之循環應力-應變曲線,並建立錫球的等效非彈性應變振幅 與等效應力振幅 關係式為 ,以及BGA試片位移振幅 及對應 之關係式: 。上述方法連結業界BGA試片結果與學界銲錫本構模式之研究結果。
    對BGA試片在循環傾斜位移測試下初始壽命預估,本文循環損傷在物理現象下依循環圈數及 上升加大其損傷強度依此,可推導出 -修正之損傷乘冪方程式並決定63Sn/37Pb及Sn/3.5Ag/0.75Cu之損傷指數n。結合損傷演化方程式與前述Endochronic Viscoplasticity 可推導出以 -Modified Lee-Coffin-Manson( -LCM) 方程式: ,及 -LBGA方程式: 。上述方程式對63Sn/37Pb、Sn/3.5Ag/0.75Cu BGA疲勞壽命數據皆有良好之預估結果;再與文獻所提供之預估結果做評論。

    In this paper, the force -oblique displacement correction methods of the BGA solder joint specimens and the values of grip stiffness were used to correct the force-oblique displacement curves of the 63Sn/37Pb BGA specimens into the force-displacement data of their solder balls under proportional strain cyclic test. The kernel function of Endochronic cyclic viscoplasticity of 63Sn/37Pb bulk material was employed to predict the cyclic proportional stress-strain curves and then construct the relationship of the effective inelastic strain amplitude and the effective stress amplitude : . Also the BGA oblique displacement amplitude has a relation with of solder ball by . This result connects the research of BGA solder joint specimen in industry and the research of constitutive models in academic.
    Based on physical phenomena, dependent damage degree depends positively on N cycle and , then the -modified damage power equation and the -Modified Lee-Coffin-Manson equation( -LCM) for the fatigue initiation life of solder ball: can be derived. Finally the -LBGA equation for the fatigue life of BGA specimens: can be obtained. Using the -LBGA equation, both of 63Sn/37Pb and Sn/3.5Ag/0.75Cu BGA fatigue life can be predicted very well.

    摘要 I Abstract II 誌謝 IV 符號說明 V 目錄 IX 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 3 第二章 傾斜位移角度下BGA試片測試系統負荷-位移修正法 6 2-1 本章介紹 6 2-2 BGA負荷-位移修正法 7 2-2-1 Sn/3.5Ag/0.75Cu負荷-位移修正結果 10 2-2-2 63Sn/37Pb負荷-位移修正計算及結果 13 第三章 BGA試片在傾斜位移角度下內涵時間黏塑性本構方程式及壽命預估公式 14 3-1 本文介紹 14 3-2 錫球循環比例應變 下含損傷增量本構方程式 15 3-3 錫球循環比例應變內涵損傷演化方程式之建立 23 3-4 錫球Endochronic疲勞壽命 -LCM公式 27 3-5 錫球 - Modified損傷公式 28 3-6 BGA試片Endochronic疲勞壽命( -LBGA)公式 29 第四章 BGA試片傾斜位移角度下內涵時間黏塑性理論之計算與實驗比較 30 4-1 本章介紹 30 4-2 錫球內涵時間黏塑性理論之材料參數 30 4-2-1 以單剪試驗( )為基準決定內涵時間黏塑性理論之材料參數 30 4-2-2 定溫下以位移振幅( )為基準之核心函數 32 4-2-2-1 Sn/3.5Ag/0.75Cu之核心函數 32 4-2-2-2 63Sn/37Pb之核心函數 33 4-2-3 函數 之決定 34 4-2-3-1 Sn/3.5Ag/0.75Cu材料函數 之結果 34 4-2-3-2 63Sn/37Pb材料函數 之計算 35 4-2-4 材料參數 及 方程式建立 36 4-2-4-1 Sn/3.5Ag/0.75Cu材料函數 與 之結果 36 4-2-4-2 63Sn/37Pb材料函數 與 37 4-2-5 63Sn/37Pb循環軸向位移( )之計算結果與實驗之比較 38 4-2-6 63Sn/37Pb循環比例位移角度( )之計算結果與實驗之比較 38 4-2-7 等效循環應力-應變關係式之建立 40 4-2-7-1 Sn/3.5Ag/0.75Cu等效循環應力-應變關係式 41 4-2-7-2 63Sn/37Pb等效循環應力-應變關係式 43 4-3 BGA位移路徑-等效非彈性應變振幅關係式之建立 45 4-3-1 Sn/3.5Ag/0.75Cu BGA試片位移路徑-等效非彈性應變關係式 46 4-3-2 材料63Sn/37Pb BGA試片位移路徑-等效非彈性應變關係式 47 第五章 錫球在循環比例位移路徑下 -LCM及 -損傷公式中參數之決定 50 5-1 本章介紹 50 5-2 決定材料參數n與m 50 5-2-1 Sn/3.5Ag/0.75Cu之n與m 51 5-2-2 63Sn/37Pb之n與m 51 5-3 決定 和 52 5-3-1 Sn/3.5Ag/0.75Cu之 和 52 5-3-2 63Sn/37Pb之 和 54 5-4 決定 和 55 5-4-1 Sn/3.5Ag/0.75Cu之 和 值 56 5-4-2 63Sn/37Pb之 和 值 56 5-5 決定 57 5-5-1 Sn/3.5Ag/0.75Cu之 函數 57 5-5-2 63Sn/37Pb之 函數 59 5-6 決定 60 5-6-1 Sn/3.5Ag/0.75Cu之 函數 60 5-6-2 63Sn/37Pb之 函數 60 第六章 63Sn/37Pb及Sn/3.5Ag/0.75Cu BGA試片在循環傾斜位移測試下初始壽命預估-含循環損傷內涵時間黏塑性理論之應用 61 6-1 錫球Endochronic疲勞壽命 -LCM預估結果及討論 61 6-1-1 Sn/3.5Ag/0.75Cu 錫球Endochronic疲勞壽命 -LCM預估結果及討論 61 6-1-2 63Sn/37Pb錫球Endochronic疲勞壽命 -LCM預估結果及討論 62 6-2 BGA試片Endochronic疲勞壽命 -LBGA預估結果及討論 62 6-2-1 Sn/3.5Ag/0.75Cu BGA試片Endochronic疲勞壽命 -LBGA預估結果及討論 62 6-2-2 63Sn/37Pb BGA試片Endochronic疲勞壽命 -LBGA預估結果及討論 64 第七章 結論 67 附表 69 附圖 71 參考文獻 122

    [1] 張俊偉,“63Sn/37Pb銲點試片在循環比例位移路徑下疲勞初始壽命預估-含循環損傷內涵時間黏塑性理論之應用”,碩士論文-國立成功大學工程科學系,2008。
    [2] 林泰廷,“循環比例位移路徑下Sn/3.5Ag/0.75Cu BGA銲點試片疲勞初始壽命預估-含循環損傷內涵時間黏塑性理論之應用”,碩士論文-國立成功大學工程科學系,2009。
    [3] Park, T. S. and Lee, S. B., “Isothermal Low Cycle Fatigue Test of Sn/3.5Ag/0.75Cu and 63Sn/37Pb Solder Joint under Mixed-Mode Loading Cases,” Electronic Components and Technology Conference, pp.979-984, 2002.
    [4] Park, T. S. and Lee, S. B., “Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions,” ASME Journal of Electronic Packing., Vol. 127, pp. 237-244, 2005.
    [5] Kachanov, L. M., “Introduction to Continuum Damage mechanics ” , Kluwer Academic Publishers, 1986.
    [6] Brown, M. W. and Miller, K. J., “A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions,” Proceedings of the Institution of Mechanical Engineers, Vol. 187, No. 65, pp. 745-755, 1973.
    [7] Stolkarts, V., Keer, L.M. and Fine, M.E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” Journal of Mechanics and Physics of Solid, Vol.47, pp.2451-2468, 1999.
    [8] Park, T. S., and Lee, S. B., “Mechanical Fatigue Tests of Solder Joint under Mixed-Mode Loading Cases,” 2001 Int’1 Symposium on Electronic Materials and Packaging, (C) 2001 IEEE, pp.438-443.
    [9] Park, T.S., and Lee, S.B., “Cyclic Stress-Strain Measurement Tests of Sn 3.5Ag 0.75Cu Solder Joint,” 2002 Int’1 Symposium on Electronic Materials and Packaging, (C) 2002 IEEE,pp.317-323.
    [10] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Soloder Alloy”, Journal of Mechanics, Vol.23,pp.433-445,2007.
    [11] 李泰廣,“Sn/3.5Ag/0.75Cu銲點試片在循環比例位移路徑下含循環損傷內涵時間黏塑性理論之應用”,碩士論文-國立成功大學工程科學系,2007。
    [12] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” Journal of Mechanics, Vol.22, No.3, pp.181-191, 2006.
    [13] Lee, C. F. and Lee, Z. H., “Predicting Fatigue Initiation Life of Sn/3.8Ag/0.7Cu Solder Using Endochronic Cyclic Damage-Coupled Viscoplastic Theory,” Journal of Mechanics, Vol. 24, No.4, pp.369-377, 2008.
    [14] Wei, Y., Lau, K. J., Vianco, P., and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading,” ASME Journal of Electronic Packing., Vol. 126, pp. 367-373, 2004.

    [15] Shang, J. K., Zeng, Q. L., Zhang, L. and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” Journal of Materials Science : Material in Electron., Vol. 18(1-3), pp. 211-227, 2007.
    [16] Zeng, Q., Wang, Z., Xian, A., and Shang, J., “Low Cycle Fatigue Behavior of Sn-3.8Ag-0.7Cu Lead-Free Solder,” Chinese Journal of Materials Research., Vol. 18, pp. 11-17, 2004.
    [17] Socie, D.F., Waill, L. A., and Dittmer, D. F., “Biaxial Fatigue of Inconel 718 Including Mean Stress Effects,” Multiaxial Fatigue, ASTM STP 853, Miller, K. J. and Brown, M. W., Eds., American Society for Testing and Materials, Philadelphia, pp. 463-481, 1985.
    [18] Lee, K. O., Yu, J., Park, T. S. and Lee, S. B., “Low Cycle Fatigue Characteristics of Sn-Based Solder Joints,” Journal of Electronic Materials , Vol. 33, No.4, pp. 249-257, 2004.
    [19] 林紘毅,“Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究”,碩士論文-國立成功大學工程科學系,2006。
    [20] Lohr, R. D. and Ellison, E. G., “Biaxial High-Strain Fatigue Testing of 1Cr-Mo-V Steel, ” Fatigue of Engineering Materials and Structures, Vol.3,pp.1-17,1980.
    [21] Kandil, F. A., Brown, M. W., and Miller, K. J., “Biaxial Low-Cycle Fatigue Fracture of 316 Stainless Steel of Evaluated Temperatures,” pp. 203-210 in Mechanical Behavior and Nuclear Applications of Stainless Steel at Elevated Temperatures, Book 280, The Metals Society, London, 1982.

    下載圖示 校內:立即公開
    校外:2012-07-28公開
    QR CODE