簡易檢索 / 詳目顯示

研究生: 龍麒安
Lung, Chi-An
論文名稱: 以中空扭剪探討近斷層加載下砂土液化行為
Application of Hollow Cylinder Apparatus to Investigate the Behavior of Soil Liquefaction under Near-Fault Seismic Loading
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 中空扭剪液化阻抗近斷層不規則加載液化試驗
外文關鍵詞: Hollow Cylinder Apparatus, Liquefaction resistance, Near-fault, irregular loading, liquefaction behavior
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受限於可施加高速及高頻之剪動設備相對缺乏,現今砂土液化相關研究,在近斷層加載方面相對欠缺,本研究之目的為使用中空扭剪探討砂土在近斷層加載下之液化行為。本研究採用乾淨砂試驗之,並以九二一集集大地震之近斷層地震歷時作為試驗內容,並將結果與正弦波反覆剪應力之液化試驗結果進行比較。分析結果顯示,高頻脈衝之剪力波形最大剪應力比與液化阻抗(CRR)之比值約略為0.45,而顯著脈衝之比值則約略為0.35;在臨界液化之週期數方面,高頻脈衝狀態下為3個週期數,顯著脈衝則約略為1至2個週期數;以能量觀點分析,可發現高頻脈衝性質之剪應力歷時在剪動能量累積至60%以前即發生初始液化,顯著脈衝性質之剪應力歷時則須在能量累積至70%之後才有液化之可能。

    Limited by the lack of shearing equipment capable of applying high speed and high frequency, the current research on sand liquefaction is relatively lacking in near-fault loading. The purpose of this study is to investigate the liquefaction of sand under near-fault loading using hollow cylinder apparatus. In this study, the clean sand test was used, and the near-fault seismic duration of the 1999 Chi-Chi earthquake was taken as the test content, and the results were compared with the liquefaction test results of the sine wave repeated shear stress. The analysis results show that the ratio of the maximum shear stress ratio to the cyclic resistance ratio (CRR) is about 0.45 in the waveform of high-frequency pulse, while the ratio of the significant pulse is about 0.35. In terms of the number of cycles in critical liquefaction, the high-frequency pulse corresponds to 3 cycles, and the significant pulse is about 1 to 2 cycles. From the energy point of view, it can be found that initial liquefaction occurs before the energy accumulates to 60% in the waveform of high-frequency pulse, while the waveform of the significant pulse must be liquefied after the energy has accumulated to 70%.

    摘要I EXTENDED ABSTRACTII 目錄XII 表目錄XV 圖目錄XVI 第一章 緒論1 1-1研究背景與動機1 1-2研究方法與流程1 1-3論文架構3 第二章 文獻回顧4 2-1中空扭剪系統發展4 2-1-1 Hight et al. (1983) HCA研究5 2-1-2 Tatsuoka et al. (1986) HCA研究8 2-2 HCA剪應力及剪應變計算10 2-2-1 HCA剪應力計算10 2-2-2 HCA剪應變計算11 2-3液化現象12 2-3-1液化機制12 2-3-2液化判定準則12 2-4砂土之不規則動態加載13 2-5試體準備方式17 2-4-1濕夯法(Moist Tamping)17 2-4-2氣霣法(Air Pluviation)17 2-4-3濕霣法(Water Pluviation)18 2-6近斷層波型特徵18 第三章 試驗儀器20 3-1 K0壓密中空扭剪儀架構20 3-1-1外部構件設計22 3-1-2伺服馬達24 3-1-3電動缸與油壓缸25 3-1-4壓力控制系統26 3-1-5 I/O介面卡與訊號放大器27 3-2中空扭剪系統控制28 3-2-1伺服馬達子系統29 3-2-2垂直荷重子系統31 3-2-3水平扭剪子系統32 3-2-4資料自動擷取系統33 3-3傳感器率定33 3-3-1荷重元(Load cell)率定33 3-3-2扭力計(Torque transducer)率定36 3-3-3位移傳感器(LVDT)率定39 3-3-4壓力傳感器率定42 第四章 試驗流程與系統驗證43 4-1試驗規劃 43 4-2試驗材料之基本物理性質 43 4-3正弦波剪應力之液化試驗流程45 4-3-1試體製作與架設45 4-3-2試體飽和47 4-3-3試體壓密47 4-3-4不排水剪動48 4-4不規則剪應力加載之液化試驗流程49 4-4-1地震歷時與剪應力之換算50 4-4-2能量分布區間50 4-4-3不排水剪動51 4-5系統驗證試驗52 4-5-1正弦波剪應力之液化重複性試驗52 4-5-2不規則剪應力加載之液化重複性試驗54 第五章 試驗結果與分析56 5-1試驗計畫56 5-2正弦波反覆剪應力液化試驗結果61 5-3不規則剪應力加載之液化試驗結果63 5-4分析與討論64 5-4-1最大剪應力比與液化阻抗比之關係64 5-4-2地震折減倍率對週期數之影響67 5-4-3愛氏震度能量百分比之比較73 第六章 結論與建議79 6-1結論79 6-2建議80 第七章 參考文獻81 附錄84

    張竣閔(2005),「小應變中空扭剪試驗局部變形監測」,國立交通大學土木工程學系,碩士論文。

    陳昱愷(2018),「應用中空扭剪試驗探討剪應變速率對土壤動態特性之影響」國立成功大學土木工程學系,碩士論文。

    Ampadu, S. and Tatsuoka, F. (1993), “A Hollow Cylinder Torsional Simple Shear Apparatus Capable of a Wide Range of Shear Strain Measurement,” Geotechnical Testing Journal, 16 (1) pp. 3~17.

    Arias, A. (1970). A measure of earthquake intensity: in Seismic Design for Nuclear Power Plants, Hansen, RJ.

    Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: measurement and parameter effects. Journal of Soil Mechanics & Foundations Div, 98(sm6).

    Hight, D. W., Gens, A., & Symes, M. J. (1983). The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique, 33(4), 355-383.

    Iwasaki, T., Tatsuoka, F., & Takagi, Y. (1978). Shear moduli of sands under cyclic torsional shear loading. Soils and Foundations, 18(1), 39-56.

    Ishihara, K. (1996). Soil behaviour in earthquake geotechnics

    Ishihara, K., & Li, S. I. (1972). Liquefaction of saturated sand in triaxial torsion shear test. Soils and Foundations, 12(2), 19-39.

    Kramer, S. L. (1996).’’ Geotechnical Earthquake Engineering,’’ Prentice Hall, Inc., pp.409-417.
    Kuerbis, R., Negussey, D., & Vaid, Y. P. (1988). Effect of gradation and fines content on the undrained response of sand. In Hydraulic fill structures (pp. 330-345). Publ by ASCE

    Lambe, T.W. (1951).’’Soil Testing for Engineers.’’John Willy & Sons, Inc., New York.

    Presti, D. L., Pedroni, S., & Crippa, V. (1992). Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: A comparative study. Geotechnical Testing Journal, 15(2), 180-189

    Oda, M., Koishikawa, I., & Higuchi, T. (1978). Experimental study of anisotropic shear strength of sand by plane strain test. Soils and foundations, 18(1), 25-38.

    Saada, A. S. (1988). Hollow Cylinder Torsional Devices: Their Advantage and Limitations, Advanced Triaxial Testing of Soil and Rock, ASTM STP 977, R. Donaghe, R. Chaney, M. Silver, Eds., American Society for Testing Materials, Philadelphia, 766-795.

    Seed, H. B., and Idriss, I.M. (1970). “A Simplified Procedure for Evaluating Soil Liquefaction Potential,” Report EERC 70-9, Earthquake Engineering Research Center, University of California, Berkeley.

    Seed, H. B., Martin, P. P., and Lysmer, J. (1975a). “The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction,” Earthquake Engineering Research Center, Report No.UCB/EERC 75-26 .

    Seed, H. B., Mori, K., and Chan, C.K. (1975). “Influence of Seimic History on the Liquefaction Characteristics of Sands,” Report EERC 75-25, Earthquake Engineering Research Center, University of California, Berkeley,21 pages.

    Seed, R. B., and Harder, L.F. (1979). “SPT-based Analysis of Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division,” Vol.105, No. 2, pp.201-255.

    Seed, H. B., and Idriss, I.M. (1982). “Ground motions and soil liquefaction during earthquakes,” Earthquake Engineering Research Institute Monograph, Oakland, California.

    Shahi, S. K. and Baker, J. W. (2014). “An efficient algorithm to identify strong velocity pulses in multi-component ground motions.” Bulletin of the Seismological Society of America, Vol. 104, No . 5, pp. 2456-2466.

    Tatsuoka, F., Sonoda, S., Hara, K., Fukushima, S., and Pradhan, T. B. S. (1986). “Failure and Deformation of Sand in Torsional Shear” Soils and Foundations, Vol. 26, No. 4, December, pp. 79-97.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE