簡易檢索 / 詳目顯示

研究生: 李鑑洲
Lee, Chien-Chou
論文名稱: 應用浮標實測資料與數值模式分析船難事件
Application of Buoy Measurement Data and Numerical Models to Analyze Shipwreck Incidents
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 125
中文關鍵詞: 浮標資料分析海流變化船難事件SCHISM
外文關鍵詞: SCHISM, shipwreck, ocean current, buoy data analysis
相關次數: 點閱:53下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣東部海域航運發達,船舶在此區域航行時受到海流影響,有可能導致船難事件的發生,本研究使用SCHISM三維水動力數值模式模擬這片海域的海流變化,同時也進行浮標實測資料的流速及流向分析,針對自然因素分析導致船難事件發生的原因。
    和平港的浮標實測流向資料顯示,此區域的海流流向以東北流與西南流為主,在兩年中各占全年總資料數的超過20%,而對浮標實測流速資料的分析結果顯示,在水下7公尺處的全年平均流速最快,同時發現東北流與西南流的平均流速有明顯的季節性變化,東北流在夏季時最強;西南流則在秋冬時最強。統計水下7公尺這一深度中流速超過0.5 m/s的強烈東北流在各潮汐週期內的出現時機與漲退潮時的海流平均流速變化,推論船舶在高潮點時至高潮點後2小時內與低潮點後第1.5小時左右時進港是相對安全的時間。
    本研究以和平港最近發生過的三起事故為例,藉由模式之模擬結果分析擱淺事件前後的海流變化,船舶在和平港主航道外需對抗強勁的大範圍東北流與南外防波堤處的繞射海流,因此保持船艏偏左的姿態航行,在船艏剛進入主航道時東北流消失,影響船艏的海流驟然減弱,與此同時船艉仍受到強勁東北流影響,可能造成整個船身往逆時針方向旋轉並在進入主航道時撞上位於西側的水下消波塊,且主航道內外的海流流速差異相當大,可能造成水手更難以掌握船舶動態,依據海流的模擬結果推論海流的變化為造成多起航線軌跡與碰撞處相似的和平港船舶擱淺事件的原因。

    To find out why the shipwreck accidents happened, this study analyzes the in-suit data measured from the Hoping Harbor buoy. The ocean currents in this area predominantly flow northeast and southwest, it was also observed that there is a seasonal variation in the average speeds of the northeast and southwest currents. The annual average current speed is fastest at a depth of 7 meters. Statistics on the occurrence of strong northeast currents exceeding 0.5 m/s at a depth of 7 meters during tidal cycles, along with changes in average current speeds during high and low tides, suggest that the safest times for ships to enter the harbor are within 2 hours after high tide and around 1.5 hours after low tide. This study also uses SCHISM model to simulate three recent accidents at Hoping harbor, according to the simulation results, ships navigating outside the Hoping harbor must contend with a strong, wide-ranging northeast current and diffracted currents near the south outer breakwater. The simulation results show that the difference in current speeds between inside and outside the harbor can be up to tenfold. Therefore, maintaining a leftward heading is recommended. As the ship’s bow enters the harbor, the northeast current abruptly disappears, significantly reducing the influencing current on the bow. Meanwhile, the stern is still affected by the strong northeast current, potentially causing the ship to rotate counterclockwise and collide with the underwater wave-dissipating blocks on the west side of the main channel of Hoping harbor. The significant difference in current speeds inside and outside Hoping harbor can make it more challenging for sailors to control the ship’s dynamics. Based on the simulation results, it is inferred that variations in ocean currents are a contributing factor to multiple grounding incidents at Hoping harbor, characterized by similar navigational tracks and collision points.

    摘要 I ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 前言 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 7 1-4 研究架構 7 第二章 SCHISM模式介紹 9 2-1 SCHISM模式理論 9 2-1-1 控制方程式 9 2-1-2 SCHISM模式邊界條件 11 2-1-3 紊流閉合模式 12 2-1-4 求解傳輸方程式 13 2-2 模式網格建置 19 2-2-1 水平網格 19 2-2-2 垂直網格 21 第三章 研究區域介紹與實測資料分析 25 3-1 研究區域及資料來源 25 3-2 實測資料分析結果 30 3-3 東北流特性分析 34 3-4 西南流特性分析 41 3-5 海流平均流速變化 48 第四章 模擬結果驗證與探討 53 4-1 模式網格設置與輸入資料 53 4-1-1 網格設置 53 4-1-2 輸入資料及參數 55 4-2 驗證結果 56 4-3 實際案例分析 61 4-3-1 詔維輪事故 61 4-3-2 正明輪事故 77 4-3-3 粵電85號事故 87 第五章 結論與建議 98 5-1 結論 98 5-2 建議 100 參考文獻 101

    [1] 李啟瑞(2017),「應用SCHISM模式探討臺灣近岸海流之特性」,國立成功大學水利及海洋工程研究所碩士論文
    [2] 邱啓敏,黃清哲,莊士賢,范揚洺, & 吳立中(2018),「SCHISM 及 GNOME 油污擴散模式應用於臺灣近岸海域油污染的預測」,海洋工程學刊, 18(2), 85-119.
    [3] 吳柏緯(2020),「船難事件發生時之海象分析」,國立成功大學水利及海洋工程研究所碩士論文
    [4] 張榮華(1994) ,「自由表面海洋環流模式的正,斜壓模分解算法」,大氣科學,18(3) , 310-319.
    [5] 國家運輸安全調查委員會(2023) ,「詔維輪重大運輸事故調查報告」
    [6] Andres, M., Kwon, Y. O., & Yang, J. (2011). Observations of the Kuroshio's barotropic and baroclinic responses to basin‐wide wind forcing. Journal of Geophysical Research: Oceans, 116(C4).
    [7] Astreina, L. B., & Pershina, L. A. (2021). Natural causes of ship accidents in the Bermuda region on the example of the El Faro ship. In IOP Conference Series: Earth and Environmental Science (Vol. 867, No. 1, p. 012018). IOP Publishing.
    [8] Bitner-Gregerse, E. M., Soares, C. G., & Vantorre, M. (2016). Adverse weather conditions for ship manoeuvrability. Transportation Research Procedia, 14, 1631-1640.
    [9] Blumberg, A. F., & Mellor, G. L. (1987). A description of a three‐dimensional coastal ocean circulation model. Three‐dimensional coastal ocean models, 4, 1-16.
    [10] Canuto, V. M., Howard, A., Cheng, Y., & Dubovikov, M. S. (2001). Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. Journal of Physical Oceanography, 31(6), 1413-1426.
    [11] Casulli, V., & Zanolli, P. (2005). High resolution methods for multidimensional advection–diffusion problems in free-surface hydrodynamics. Ocean Modelling, 10(1-2), 137-151.
    [12] Chen, C., Beardsley, R., & Cowles, G. (2006). An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography, 19(1), 78-89.
    [13] Chen, C., Shiotani, S., & Sasa, K. (2013). Numerical ship navigation based on weather and ocean simulation. Ocean Engineering, 69, 44-53.
    [14] Chen, C., Shiotani, S., & Sasa, K. (2015). Effect of ocean currents on ship navigation in the East China Sea. Ocean Engineering, 104, 283-293.
    [15] Courant, R. (1928). On the partial difference equations of mathematical physics. Mathematische annalen, 100, 32-74.
    [16] Didenkulova, E., Didenkulova, I., & Medvedev, I. (2022). Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions. Natural Hazards and Earth System Sciences Discussions, 2022, 1-17.
    [17] Du, J., Park, K., Shen, J., Zhang, Y. J., Yu, X., Ye, F., ... & Rabalais, N. N. (2019). A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico. Ocean Science, 15(4), 951-966.
    [18] Duraisamy, K., & Baeder, J. D. (2007). Implicit scheme for hyperbolic conservation laws using nonoscillatory reconstruction in space and time. SIAM Journal on Scientific Computing, 29(6), 2607-2620.
    [19] Galperin, B., Kantha, L. H., Hassid, S., & Rosati, A. (1988). A quasi-equilibrium turbulent energy model for geophysical flows. Journal of the atmospheric sciences, 45(1).
    [20] Hu, C. K., Chiu, C. T., Chen, S. H., Kuo, J. Y., Jan, S., & Tseng, Y. H. (2010). Numerical simulation of barotropic tides around Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 21(1).
    [21] Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., ... & Kessler, W. S. (2015). Pacific western boundary currents and their roles in climate. Nature, 522(7556), 299-308.
    [22] Jan, S., Chern, C. S., Wang, J., & Chiou, M. D. (2012). Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait. Journal of Geophysical Research: Oceans, 117(C2).
    [23] Kamal, B., & Cakir, E. (2022). Data-driven Bayes approach on marine accidents occurring in Istanbul strait. Applied Ocean Research, 123, 103180.
    [24] Kantha, L. H., & Clayson, C. A. (1994). An improved mixed layer model for geophysical applications. Journal of Geophysical Research: Oceans, 99(C12), 25235-25266.
    [25] Kharif, C., Pelinovsky, E., & Slunyaev, A. (2008). Rogue waves in the ocean. Springer Science & Business Media.
    [26] Lan, H., Ma, X., Qiao, W., & Deng, W. (2023). Determining the critical risk factors for predicting the severity of ship collision accidents using a data-driven approach. Reliability Engineering & System Safety, 230, 108934.
    [27] Liu, Q., Xue, H., Chai, F., Wang, Z., Chao, Y., Rao, S., ... & Zhang, Y. (2022). How winds and river discharge affect circulation in a mesotidal estuary, San Francisco Bay, USA. EarthArXiv eprints, X5RP85.
    [28] Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851-875.
    [29] Metzger, E. J., Hurlburt, H. E., Wallcraft, A. J., Cummings, J. A., Chassignet, E. P., & Smedstad, O. M. (2006, June). Global ocean prediction using HYCOM. In 2006 HPCMP Users Group Conference (HPCMP-UGC'06) (pp. 271-274). IEEE.
    [30] Otterland, A., & Roos, B. (1960). The human factor in shipwrecks and other accidents to ships: analysis of an official Swedish series. British Journal of Preventive & Social Medicine, 14(2), 49.
    [31] Rodi, W. (1984) Turbulence models and their applications in hydraulics: a state of the art review. Delft, The Netherlands, International Association for Hydraulics Research.
    [32] Song, Y., & Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1), 228-244.
    [33] Suanda, S. H., Feddersen, F. A. L. K., & Kumar, N. I. R. N. I. M. E. S. H. (2017). The effect of barotropic and baroclinic tides on coastal stratification and mixing. Journal of Geophysical Research: Oceans, 122(12), 10-156.
    [34] Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbulence models.
    [35] Ventikos, N. P., Louzis, K., & Koimtzoglou, A. (2018). Underlying risks possibly related to power/manoeuvrability problems of ships: The case of maritime accidents in adverse weather conditions. Trends and Challenges in Maritime Energy Management, 213-230.
    [36] Wang, J., Qin, H., Hu, Z., & Mu, L. (2023). Three-dimensional study on the interaction between a container ship and freak waves in beam sea. International Journal of Naval Architecture and Ocean Engineering, 15, 100509.
    [37] Waseda, T., In, K., Kiyomatsu, K., Tamura, H., Miyazawa, Y., & Iyama, K. (2014). Predicting freakish sea state with an operational third-generation wave model. Natural Hazards and Earth System Sciences, 14(4), 945-957.
    [38] Wilcox, D.C. (1998). Reassessment of scale determining equation for advance turbulence models. AIAA J., 26, 1299-1310
    [39] Yang, Y., Guan, W., Deleersnijder, E., & He, Z. (2022). Hydrodynamic and sediment transport modelling in the Pearl River Estuary and adjacent Chinese coastal zone during Typhoon Mangkhut. Continental Shelf Research, 233, 104645.
    [40] Ye, F., Zhang, Y. J., He, R., Wang, Z., Wang, H. V., & Du, J. (2019). Third-order WENO transport scheme for simulating the baroclinic eddying ocean on an unstructured grid. Ocean Modelling, 143, 101466.
    [41] Ye, F., Zhang, Y. J., Wang, H. V., Huang, H., Wang, Z., Liu, Z., & Li, X. (2018). Cross-Scale Baroclinic Simulation of the Effect of Channel Dredging in an Estuarine Setting. Water, 10(2), 163.
    [42] Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., ... & Liu, Z. (2020). Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects. Ocean Modelling, 145, 101526.
    [43] Yildiz, S., Uğurlu, Ö., Loughney, S., Wang, J., & Tonoğlu, F. (2022). Spatial and statistical analysis of operational conditions influencing accident formation in narrow waterways: A Case Study of Istanbul Strait and Dover Strait. Ocean Engineering, 265, 112647.
    [44] Yu, H. C., Zhang, Y. J., Jason, C. S., Terng, C., Sun, W., Ye, F., ... & Huang, H. (2017). Simulating multi-scale oceanic processes around Taiwan on unstructured grids. Ocean Modelling, 119, 72-93.
    [45] Zalewski, P., & Posacka, K. (2021). Analysis of ship accidents based on European statistical surveys. Zeszyty Naukowe Akademii Morskiej w Szczecinie, (68 (140).
    [46] Zhang, D., Chu, X., Wu, W., He, Z., Wang, Z., & Liu, C. (2023). Model identification of ship turning maneuver and extreme short-term trajectory prediction under the influence of sea currents. Ocean Engineering, 278, 114367.
    [47] Zhang, H., Tang, W., Wang, B., & Qin, H. (2023). The occurrence probability prediction model of 2D and 3D freak waves generated by wave superposition. Ocean Engineering, 270, 113640.
    [48] Zhang, L., Wang, H., Meng, Q., & Xie, H. (2019). Ship accident consequences and contributing factors analyses using ship accident investigation reports. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of risk and reliability, 233(1), 35-47.
    [49] Zhang, Y., & Baptista, A. M. (2008). SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean modelling, 21(3-4), 71-96.
    [50] Zhang, Y. J., Ateljevich, E., Yu, H. C., Wu, C. H., & Jason, C. S. (2015). A new vertical coordinate system for a 3D unstructured-grid model. Ocean Modelling, 85, 16-31.
    [51] Zhang, Y. J., Ye, F., Stanev, E. V., & Grashorn, S. (2016). Seamless cross-scale modeling with SCHISM. Ocean Modelling, 102, 64-81.
    [52] Zhang, Z., & Li, X. M. (2017). Global ship accidents and ocean swell-related sea states. Natural Hazards and Earth System Sciences, 17(11), 2041-2051.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE