簡易檢索 / 詳目顯示

研究生: 李育周
Lee, Yu-Chou
論文名稱: 利用快速升溫化學氣相沉積技術在矽鍺碳及矽碳氮上成長應變矽薄膜之研究
Fabrication and Characterization of Strain Silicon Thin Films on SiGeC and SiCN Substrates by RTCVD
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 28
中文關鍵詞: 應變矽矽鍺碳矽碳氮
外文關鍵詞: SiGeC, SiCN, Strain Silicon
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文報導利用快速升溫化學氣相沈積系統(RTCVD),成長SiGeC及SiCN薄膜,並以此二種薄膜作為基板(substrate),在其上成長應變矽(Strain-Si),並改變不同的NH3流量及不同的SiCN厚度、Strain-Si厚度來研究Strain-Si之mobility的變化情形。由實驗結果得知,本實驗室之RTCVD機台會造成Ge的大量析出而無法在SiGeC上得到良好的Strain-Si。但如在利用NH3=80sccm成長出約3000埃上的SiCN上所成長出來的Strain-Si其Hall mobility卻可高達1340 cm2/v-sec,約為無應變矽的兩倍,顯示利用RTCVD在SiCN上成長Strain-Si的方法確實可行且效果良好,為發展奈米CMOS技術另一項有價值的創新。

      This thesis reports the fabrication and characterization of strain silicon on silicon germanium carbon (SiGeC) and silicon carbon nitride (SiCN) films that have been fabricated by rapid-thermal chemical vapor deposition (RTCVD) system on silicon substrates. The strain silicon films were fabricated with various NH3 gas flow rate, SiCN films thickness, and strain silicon films thickness. The prepared strain silicon films were characterized with Hall measurement, X-ray analysis, and SEM analysis.
      Due to the outdiffusion of germanium, the strain silicon films can't been successfully fabricated on SiGeC films. However, high mobility strain silicon films were nicely deposited on SiCN films. The measured hall mobility of strain silicon on SiCN can be up to 1340 cm2/v-sec, which is even twice in comparison to an unstrain epi silicon. Therefore, our study indicates the developed strain silicon on SiCN process is an available technology for nano CMOS apprications.

    目錄 中文摘要 英文摘要 附圖表目錄 第一章 前言.............................................................1 第二章 薄膜的成長.......................................................4 2-1 快速升溫化學氣相薄膜成長系統 (RTCVD)簡介.......................4 2-2矽基板之清洗及備置..............................................5 第三章 Si1-x-yGexCy或SiCN上成長Strain-Si的理論分析......................7 第四章 Si1-x-yGexCy上成長Strain-Si的方法及特性分析......................13 4-1 成長方法.......................................................13 4-2 電機特性分析...................................................14 4-3 XRD、FESEM、EDS、AES分析.......................................15 第五章 SiCN上成長Strain-Si的方法以及特性分析............................20 5-1 成長方法.......................................................20 5-2 SiCN特性分析...................................................21 5-3 Strain-Si電機特性分析..........................................23 5-3-1不同型矽基板及NH3流量對Strain-Si mobility之影響.............23 5-3-2不同SiCN薄膜厚度對Strain-Si mobility之影響..................24 5-3-3不同Strain-Si薄膜厚度對Strain-Si mobility之影響.............24 第六章 結論與展望.......................................................26 6-1 結論.........................................................26 6-2 展望.........................................................27

    [1] Y. K. Fang, S. B. Hwang, K. H. Chen, C. R. Liu and L. C. Kuo, “A metal-amorphous silicon-germanium alloy schottky barrier for infrared optoelectronic IC on glass substrate application,” IEEE Trans on Electron Devices, Vol 39, No 6, pp.1350, (1992).

    [2] U. Konig, A. J. Boers, F. Schaffler, and E. Kasper, Electron. Lett. 28, 160 (1992).

    [3] K. Ismail, B. S. Meyerson, S. Rishton, J. Chu, S. Nelson, and J. Nocera, IEEE Electron Device Lett. 13, 229 (1992).

    [4] J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Device Lett. 15, 100 (1994).

    [5] M. Gluck, T. Hackbarth, U. Konig, A. Haas, G. Hock, and E. Kohn, Electron. Lett. 33, 335 (1997).

    [6] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, J. Appl. Phys. 80, 1567 (1996).

    [7] J.C.Bean,Appl.Phys.Lett.Vol.44,pp.102-104,1984.

    [8] B.S.Meyerson,Appl.Phys.Lett.Vol.48,pp.797-799,1986.

    [9] J.F.Gibbons et al.,Appl.Phys.Lett.Vol.47,pp.721-724,1985.

    [10] R.People and J.C.Bean,Appl.phys.Lett.Vol.47,pp.322-324,1985.

    [11] Crriel et al. 2001 J. Vac. Sci. Technol. B 19(6), pp.2268.

    [12] Compound Semiconductor, September, 2002, “Strain silicon joins the drive to keep CMOS chips on course,” p39-43.

    [13] L. D. Lanzerotti et al., “Suppression of boron transient enhanced diffusion in SiGe heterojunction bipolar transistors by carbon incorporation”, Appl. Phys. Lett., 70(23), pp3125-3127, 9 June 1997.

    [14] H. J. Osten et al., Proceedings of the 1999 BCTM, pp.109-112, 1999.

    [15] J. Hoyt et al., Tech. Dig. IEDM, pp.23-26, 2002.

    [16] D. K. Nayak et al., Appl. Phys. Lett. Vol.64, pp.2514-2516, 1994.

    [17] S. I. Takagi et al., “Comparative study of phonon-limited mobility of two-dimensional electron in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys. 80 (3), pp1567-1577, 1 August 1996.

    [18] L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si Waveguide Photodetectors Operating at λ=1.3μm,” J. Lightwave Technol., vol. 14, pp.787-797, May 1996.

    [19] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.

    [20] B. W. Dodson and J. Y. Tsao, “Structure relaxation in strained layer heterostruct-
    ures,” in Proc. Second Int. Symp. Silicon Molecular Beam Epitaxy, J. C. Bean and L. J. Schowalter, Eds., Pennington, NJ:Electrochemical Soc., 1988, pp. 105-113.

    [21] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures” Appl. Phys. Lett., vol. 47, no. 3, pp. 322-324, 1985.

    [22] E. kasper and S. Heim, “Challenges of high ge content silicon germanium structures” Applied Surface Science 224 (2004) 3-8.

    [23] 林鴻志,“矽鍺磊晶技術及元件上的應用”,<電子資訊>第9卷第1期2003年6月。

    [24] F.M. Bufler and B. Meinerzhagen, “Hole transport in strained Si1-xGex alloys on Si1-yGey substrates,” J. Appl. Phys., Vol. 84, pp. 5597-5502, 1998.

    [25] M. M. rieger and P. Vogl, Phys. Rev., B 48, 14276 (1993)

    [26] Liqing Wu and Meichun Huang et al., “ Theoretical study of valence-band offsets of strained Si1-x-yGexCy/Si(001) heterostructures,” J. Appl. Phys., Vol.86, pp. 4473-4476, 1999.

    [27] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge and SiGe alloys,” J. Appl. Phys., vol. 80, no. 4, pp. 2234–2252, 1996.

    [28] T. E. Whall and E. H. C. Parker, “Silicon–germanium heterostructures advanced materials and devices for silicon technology,” J. Mater. Sci., vol. 6, pp. 249–264, 1995.

    [29] F. M. Bufler, P. Graf, B. Meinerzhagen, B. Adeline, M. M. Riegger, H. Kibbel, and G. Fischer, “Low- and high-field electron transport parameters for unstrained and strained Si1-xGex,” IEEE Electron Device Lett., vol. 18, no. 6, pp. 264–266, 1997.

    [30] F. M. Bulter, P. Graf, B. Meinerzhagen, G. Fischer, and H. Kibbel, “Hole trans-port investigation in unstrained and strained SiGe,” J. Vac. Sci. Technol. B, vol. 16, pp. 1667–1669, 1998.

    [31] T. Manku and A. Nathan, “Effective mass for strained p-type Si1-xGex ,” J. Appl. Phys., vol. 69, no. 12, pp. 8414–8416, 1991.

    [32] S. John, S. K. Ray, E. Quinones, S. K. Oswal, and S. K. Banerjee, Heterostruc p-channel metal-oxide-semiconductor transistor utilizing a Si1-xGex Cy channel,” Appl. Phys. Lett., vol. 74, no. 6, pp. 847–849, 1999.

    [33] S. Maikap, L. K. Bera, S. K. Ray, S. John, S. K. Banerjee, and C. K. Maiti, “Electrical characterization of Si/ Si1-xGex /Si quantum well heterostuctures using a MOS capacitor,” Solid-State Electron., vol. 44, pp. 1029–1034, 2000.

    [34] T. Ngai, W. J. Qi, X. Chen, R. Sharma, J. L. Fretwell, J. C. Lee, and S. Banerjee, “Electrical properties of ZrO2 gate dielectric on SiGe,” Appl. Phys. Lett., vol. 76, no. 4, pp. 502–504, 2000.

    [35] Y. C. Yeo, V. Subramanian, J. Kedzierski, P. Xuan, T. J. King, J. Bokor, and C. Hu, “Nanoscale ultra-thin-body silicon-on-insulator PMOSFET with a SiGe/Si hetero-structure channel,” IEEE Electron Device Lett., vol. 21, pp. 161–163, Apr. 2000.

    [36] S. Verdonckt-Vanderbroek, E. F. Crabbe, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel heterojunction P-MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 90–101, Jan. 1994.

    [37] Xiangdong Chen, et. al., “Hole and Electron Mobility Enhacement in Strained SiGe Vertical MOSFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 1975–1980, Sep. 2001.

    [38] J. M. Hinckley and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no. 5, pp. 2912–2926, 1990.

    [39] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si—strain-related transport improvements,” Appl. Phys. Lett., vol. 55, pp. 2008–2010, 1989.

    [40] Deepak K. Nayak, Sang Kook Chun, “Low-field mobility of strained si on (100) Si1-xGex substrate,” APPl. Phys. Lett., vol. 64, pp. 2514-2516, 1994

    [41] F. Stern and S.E. Laux, Appl. Phys. Lett. 61, 1110 (1992).

    [42] D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWillams, Appl. Phys. Lett. 62, 2853 (1993).

    [43] Hiroshi Nakatsuuji, et al., IEDM Tech. Dig., 2002.

    [44] J. Hoyt et al., IEDM Tech. Dig., pp. 23-26, 2002.

    [45] M. V. Fischetti and S. E. Laux, J. Appl. Lett., Vol. 80, p. 1567, 1996.

    [46] D. K. Nayak et al., Appl. Phys. Lett. Vol. 64, pp. 2514-2516, 1994.

    [47] Scott E. Thompson et al., “ A Logic Nanotechnology Featuring Strained Silicon,” IEEE Electron Device Lett., Vol. 25, pp. 191-193, 2004.

    [48] A. Zaslavsky et al., “ Strain relaxation in silicon-germanium microstruvtures observed by resonant tunneling spectroscopy,” Appl. Phys. Lett. Vol. 67, pp. 3921-3923, 1995.

    下載圖示 校內:2006-07-06公開
    校外:2007-07-06公開
    QR CODE